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Abstract
A spectral graph realization is an embedding of a finite simple graph into Euclidean space that
is constructed from the eigenvalues and eigenvectors of the graph’s adjacency matrix. It has
previously been observed that some polytopes can be reconstructed from their edge-graphs
by taking the convex hull of a spectral realization of this edge-graph. These polytopes, which
we shall call spectral polytopes, have remarkable rigidity and symmetry properties and are a
source for many open questions.

In this thesis we aim to further the understanding of this phenomenon by exploring the
geometric and combinatorial properties of spectral polytopes on several levels. One of our
central questions is whether already “weak” forms of symmetry can be a sufficient reason for
a polytope to be spectral. To answer this, we derive a geometric criterion for the identifica-
tion of spectral polytopes and apply it to prove that indeed all polytopes of combined vertex-
and edge-transitivity are spectral, admit a unique reconstruction from the edge-graph and
realize all the symmetries of this edge-graph. We explore the same questions for graph real-
izations and find that realizations of combined vertex- and edge-transitivity are not necessar-
ily spectral. Instead we show that we require a stronger form of symmetry, called distance-
transitivity.

Motivated by these findings we take a closer look at the class of edge-transitive polytopes, for
which no classification is known. We state a conjecture for a potential classification and pro-
vide complete classifications for several sub-classes, such as distance-transitive polytopes and
edge-transitive polytopes that are not vertex-transitive. In particular, we show that the latter
class contains only polytopes of dimension d ≤ 3.

As a side result we obtain the complete classification of the vertex-transitive zonotopes and
a new characterization for root systems.

Keywords
spectral graph realizations, eigenpolytopes, spectral polytopes, edge-transitive polytopes,
vertex-transitive zonotopes
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Introduction

The product of mathematics is clarity
and understanding. Not theorems, by
themselves.

William Thurston

The content of this thesis was developed in an effort to understand a series of curious ob-
servations made while working on so-called spectral graph realizations. Those are a technique
to embed a graph (a purely combinatorial object) into Euclidean space by using the eigenval-
ues and eigenvectors of its adjacency matrix. Applying this to the edge-graphs of polytopes
results in some cases in an embedding that looks just like the skeleton of the original poly-
tope. This phenomenon points to connections between polytope theory and spectral graph
theory, between convexity and rigidity, between symmetry in geometry and combinatorics,
all to be explored in this thesis.

A curious observation

The best way to motivate the investigation of the described phenomenon is to see it happen.
Consider the 3-dimensional cube and let G = (V, E) be its edge-graph with vertex set V =
{1, ..., 8}, numbers assigned to the vertices according to the following figure:

To G we can assign a matrix A∈ {0,1}8×8, the so-called adjacency matrix, with Ai j = 1 if and
only if i j ∈ E is an edge. The field of spectral graph theory studies the spectrum, eigenvalues
and eigenvectors of A and related matrices. For example, the spectrum of G (by which we
mean the set of eigenvalues of A) in the case of the cube-graph is

Spec(G) = {31, 13, (−1)3, (−3)1},

where the exponents denote multiplicities. The eigenvalues of the adjacency matrix are usu-
ally denoted by θ1 > θ2 > · · ·> θm in decreasing order. It is general wisdom in spectral graph
theory that one of the more exciting eigenvalues of a graph is the second-largest eigenvalue
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Introduction

θ2. For the edge-graph of the cube we have θ2 = 1 of multiplicity three. That is, there are three
linearly independent eigenvectors to θ2. One possible choice of orthogonal bases for the ei-
genspace is

u1 =























1
1
1
1
−1
−1
−1
−1























, u2 =























1
1
−1
−1

1
1
−1
−1























, u3 =























1
−1

1
−1

1
−1

1
−1























.

We can already observe the following: we started with the cube, a 3-dimensional polyhedron,
and found an eigenspace of dimension three. At this point this could well be a coincidence,
but it will become clear that there is more to it.

We can write the eigenvectors more compactly in a single matrix Φ ∈ R8×3:

Φ=

u1 u2 u3












































1 1 1 ← v1

1 1 −1 ← v2

1 −1 1 ← v3

1 −1 −1 ← v4

−1 1 1 ← v5

−1 1 −1 ← v6

−1 −1 1 ← v7

−1 −1 −1 ← v8

.

The eight rows of Φ can be naturally assigned to the vertices of G: vertex i ∈ V corresponds
to the i-th row vi of Φ. In particular, each row can be interpreted as a vector in R3 and this
defines a map V → R3. This map describes an embedding of the graph into 3-dimensional
Euclidean space and is what we call a spectral graph realization to the eigenvalue θ2. If we do
this explicitly for the cube graph we find a structure that looks suspiciously like the skeleton
of a cube.

In fact, if we were to take the convex hull of the vi we would be back at the polyhedron from
which we started.

14



What we just saw happen is that the edge-graph of the cube seems to encode, in its com-
binatorial structure, information about the dimension and geometry of the polytope it came
from, and that we can use this information to reconstruct it.

One can ask what else we could have expected to obtain by this construction? Why have
we used θ2? Why these exact eigenvectors? Is this a coincidence or does it happen for other
polytopes too? These questions have been the starting point for our studies.

Eigenpolytopes and spectral polytopes

The previously demonstrated phenomenon is not unknown to the literature. In fact, the very
polytope we obtain by taking the convex hull of a spectral realization is called eigenpolytope of
a graph and was introduced by Godsil in 1978 [31]. The eigenpolytope was soon recognized
as an interesting link between the algebraic and combinatorial properties of a graph and the
geometric properties of a polytope. To this day, their literature is quite scattered [32,47,57,
59,62–64]. A more detailed overview of the previous work will be given in Chapter 3, after
the formal introduction of eigenpolytopes.

In many cases the eigenpolytopes of an edge-graph show little resemblance to the original
polytope. Inspection of the cube example shows that the dimension of the resulting em-
bedding was not a choice, but was determined by the multiplicity of θ2, and mysteriously
matched the dimension of the cube. In contrast, the edge-graphs of many prisms have no ei-
genspace of dimension three, even though prisms are 3-dimensional.

Spec(6-prism) = {31, 22, 11, 04, (−1)1, (−2)2, (−3)1}

We can then not expect to reconstruct a prism in the same way we reconstructed the cube. We
shall see that a polytope being an eigenpolytope of its edge-graph is something very special.

Polytopes with this property will be called spectral polytopes. They are a special kind of ei-
genpolytope. The introductory example demonstrated that the cube is a spectral polytope, or
more precisely, a θ2-spectral polytope, since we used θ2 for the reconstruction.

The existence of such polytopes has been noticed before at several instances. Two notable
occurances are in a paper by Licata and Powers [47], and in another paper by Godsil [32].
Licata and Powers observed this “self-reproducing” property for the Platonic solids, and more
generally, for all regular polytopes excluding the 4-dimensional exceptions (the 24-cell, 120-
cell and 600-cell, for which their work was inconclusive; for a reminder on the regular poly-
topes consider the classical reference from Coxeter [18], or see Appendix E). Godsil, on the
other hand, studied the eigenpolytopes for a class of graphs that is especially accessible by
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Introduction

the techniques of spectral graph theory, namely, the distance-regular graphs. He obtained a
complete classification of the distance-regular graphs that produce spectral polytopes.

In both papers the authors exclusively studied eigenpolytopes to the eigenvalue θ2. In fact,
it is not unreasonable to assume that polytopes cannot be spectral for any other eigenvalue,
though there is no proof for this claim as of yet. It appears that the second-largest eigenvalue
is somehow linked to the convexity of polytopes, a claim that we explore in more detail in
this thesis, and to which partial results will be obtained.

All in all there is still little known about eigenpolytopes and spectral polytopes. We ask:

Question 1. Which polytopes are spectral? Can we classify spectral polytopes? What else
makes them special besides the property that defines them?

Question 2. Are there spectral polytopes to an eigenvalue other than θ2?

While we will obtain only partial answers, these question have been the driving force be-
hind many of our investigations.

Spectral methods for convex polytopes

If a polytope P turns out to be spectral, then from the perspective of polytope theory there
are at least the following two observations to be made:

O1 P is uniquely determined by its edge-graph.

The construction of the eigenpolytope provides an explicit procedure to obtain P from
its edge-graph. The question which polytopes or polytope classes admit a unique re-
construction from the edge-graph (up to combinatorial equivalence) has a long history.
Since Steinitz [70] we know that a unique reconstruction is possible in dimension
three. It has since become clear that the same fails in higher dimensions. For example,
the complete graph Kn, n≥ 6 is the edge-graph of many not combinatorially equivalent
polytopes, already in dimension four [79, Example 0.6].

Certain sub-classes of polytopes are known to admit a unique reconstruction, e.g. sim-
ple polytopes [7, 42] and zonotopes [6, Theorem 6.14]. The spectral polytopes then
form another class in this list. In fact, their reconstruction is unlike stronger: the pro-
cedure not only determines the combinatorial type, but also favors a particular real-
ization.

O2 P realizes all the symmetries of its edge-graph.

This is not quite self-evident, but is more generally a property of spectral graph realiza-
tions: if a graph is embedded spectrally, then each of its combinatorial symmetries is
expressed in the embedding by a geometric symmetry. This is a well-known property,
and we include a proof of this after the formal introduction of spectral graph realiza-
tions in Chapter 2.

A polytope is clearly at most as symmetric as its edge-graph. But the converse, realizing
all symmetries of the edge-graph, is something very special. Trivial examples of this
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failing are obtained by deforming a polytope into a less symmetric shape, e.g. a square
into a rectangle. This “counterexample” is not too convincing, as the rectangle clearly
has a realization that is as symmetric as the edge-graph. A version of Steinitz’ theorem
ensures that this is true for all polytopes in up to three dimensions [51].

This breaks down in higher dimensions. All neighborly polytopes (i.e., polytopes with
edge-graph Kn) besides the simplices are less symmetric than Kn. This is another symp-
tom of the general rule that the edge-graph carries very little information about a
polytope in higher dimensions. Some 4-polytopes cannot even be realized with all the
symmetries of their face lattice (which carries much more information than the edge-
graph). One such polytope was constructed in [9]. Its polar dual has another special
property: its edge-graph is not the edge-graph of any polytope with all the symmetries
of the graph.

These properties of spectral polytopes are nice, but also kind of trivial. These observations
show their full potential only as we identify classes of polytopes as spectral that are not ob-
viously so.

For example, O2 is especially interesting if P ’s edge-graph has some symmetries to begin
with. Wishful thinking leads to the following question:

Question 3. Is every sufficiently symmetric polytope spectral?

This is intentionally vague. What does qualify as “sufficient symmetry”? For example, ver-
tex-transitivity (any two vertices of the polytope can be moved onto each other by a symme-
try) does not qualify: there are vertex-transitive polytopes that are not spectral, e.g. rectan-
gles, prisms and other more “convincing” counterexamples such as vertex-transitive neigh-
borly polytopes [41].

On the other hand, being a regular polytope (being transitive on faces of all dimensions)
does qualify. As previously mentioned, this was shown for most cases by Licata and Pow-
ers [47]. We shall give several proofs for the general case over the course of this thesis. This
statement is not too impressive however, given that the regular polytopes are not a particu-
larly rich class (the classification has been achieved by Schläfli [66] around 1852 and shows
that there are only three regular polytopes in any dimension d ≥ 5).

The “right symmetry” must be somewhere in between. To narrow down where this might
be we can take a look at what O1 and O2 would imply for it:

O1’ Every sufficiently symmetric polytope is uniquely determined by its edge-graph up to
orientation and scale.

This is related to the concept of a perfect polytope. Roughly, a polytope is called perfect
if it has a unique realization of highest symmetry (see e.g. [28]).

This is also related to ideas from rigidity theory: the polytope is rigid in the sense that
it admits a unique realization that complies with a certain set of constraints.

O2’ Every sufficiently symmetric polytope realizes all the symmetries of its edge-graph.

We think that these statements are quite exciting, if they are true, and if they are formulated
with an interesting version of “sufficient symmetry”.
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One of our first candidates for sufficient symmetry is edge-transitivity (any two edges of the
polytope can be moved onto each other by a symmetry). This does not work from the get
go: there are several edge-transitive polytopes that are not spectral, e.g. certain polygons
and also one 3-dimensional polyhedron (see Figure 1).

Figure 1. Examples of edge-transitive polytopes that are not spectral. This is evident for
the polygons as they not express the vertex-transitivity of their edge-graphs.
The polyhedron on the right is the rhombic triacontahedron, a Catalan solid,
and is the only non-spectral edge-transitive polyhedron.

However, we shall see that this first guess does not miss by much. Consider the following
refinement:

Question 4. If P is simultaneously vertex- and edge-transitive, is it spectral?

Providing an answer to Question 4 was a major driving force behind the development of
Part I of the thesis. And in fact, one of the main results of this part is to answer this question in
the affirmative. As a consequence, polytopes of this symmetry can be uniquely reconstructed
from their edge-graphs and realize all their symmetries. This is an example for a statement
about convex polytopes whose currently only proof uses spectral graph theory.

Edge-transitive polytopes and more

It have been these findings that sparked our interest in the class of edge-transitive polytopes.
Is this class sufficiently rich to make our investigations worthwhile?

The reader might be surprised (we certainly were) to find that despite the classical appeal
of this question, there has seemingly not been obtained a complete classification of the edge-
transitive convex polytopes.

Question 5. How rich is the class of edge-transitive polytopes?
Is it more like vertex-transitivity (a classification is infeasible), or more like regularity (only

a few examples in higher dimensions)?

This interest developed into Part II of the thesis, where we discuss in detail the ramifica-
tions and intricacies of Question 5. We do not provide a complete answer, but we certainly
make progress. After structuring the class of edge-transitive polytopes by introducing a hier-
archical classification scheme, we provide complete classifications for several sub-classes. We
derive a classification of distance-transitive polytopes (by means of spectral graph theory),
and give a precise conjecture for the classification of arc-transitive polytopes.
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Another major result in this regard is the classification of all edge-transitive polytopes that
are not vertex-transitive. The list turns out to be quite short, and most surprisingly, it contains
no polytopes of dimension four or higher. So, in a very precise sense, we show that Question 4
is indeed not far from asking whether all edge-transitive polytopes are spectral.

Part II also discusses a seemingly unrelated question: the classification of all vertex-transi-
tive zonotopes (a zonotope is a polytope in which all faces are centrally symmetric, see Ap-
pendix C.1). While initially disconnected to our study of edge-transitivity, the results of this
investigation turn out to be crucial ingredients for the classification of edge-transitive poly-
topes that are not vertex-transitive.

Graph realizations and point arrangements

Even though they are meant to provide the fundamental motivation for this work, polytopes
are only one of several objects we study in connection with symmetry and spectral graph
theory. Part I of the thesis deals only to a third with the phenomenon of spectral polytopes.
Instead it is composed of chapters addressing (in this order) point arrangements, graph real-
izations, and only then, eigenpolytopes and spectral polytopes. The chapters of Part I repre-
sent three levels of increasing structure. We describe briefly the motivation for introducing
this hierarchy, as well as some of the directions in which their theory is developed.

First, this hierarchy allows a step-wise development of all relevant concepts, such as sym-
metry, rigidity and spectral properties. Each concept can be introduced with using the least
structure necessary for its definition.

Second, it is not a priori clear that the phenomenon of spectral polytopes can be best ex-
plained on the level of polytopes. It might well be that it is just a consequence of a more fun-
damental result for, say, graph realizations. The development of Part I in stages allows us to
address each phenomenon at the earliest possible level. We will also make clear when results
do not transfer between levels.

For example, Question 3 makes perfect sense when asked for graph realizations instead of
polytopes:

Question 6. Is every sufficiently symmetric graph realization a spectral realization?

A positive answer to Question 6 implies a positive answer to the polytope version. But, it is
unclear that “sufficient symmetry” for realizations means the same as for polytopes. We shall
see that combined vertex- and edge-transitivity is not sufficient here, and must be replaced
by a stronger symmetry called distance-transitivity.
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To figure out what “sufficiently symmetric” might mean, recall the following interpretation
of O1’: if we want sufficient symmetry to make a polytope/realization spectral, it must come
attached with a kind of rigidity, that is, uniqueness up to scale and orientation.

Question 7. When is symmetry implying rigidity?

This is a very broad question. For example, whether a framework (in the sense of rigidity
theory) with prescribed symmetries is rigid has been investigated in great detail [50,58,68].
But Question 7 makes sense even without any underlying graph structure: all we need is a
set of points in Euclidean space. If this “point arrangement” has some non-trivial Euclidean
symmetries then we can ask whether it can be “deformed” in a way that does not destroy
these symmetries. If this is not possible, then we found a rigid symmetry. We later work out
the details of how rigidity and spectral properties relate to each other.

Likewise, O2’ can be considered for realizations too: a sufficiently symmetric realization
of a graph G has all the symmetries of the graph. This statement has a flavor quite different
from its polytope version: suppose that Σ ⊂ Aut(G) is a “sufficiently large” proper subgroup
of the symmetry group Aut(G) of the graph. O2’ then says that it is impossible to find a graph
realization that has all the symmetries in Σ, but not a single additional symmetry. We say
that Σ and Aut(G) cannot be “separated geometrically”.

Question 8. When can symmetry groups, even though they are combinatorially distinct, not
be separated geometrically?

Structure and main results

The thesis is divided into two parts.

Part I

Part I was developed in an effort to understand the connections between spectrum and sym-
metry, and in particular, the phenomenon of spectral polytopes. This part is divided into three
chapters that incrementally build a theory of point arrangements, graph realizations and po-
lytopes.

Chapter 1 introduces symmetry and rigidity in the context of point arrangements and de-
fines the central notion of the arrangement space, which will permeate all of Part I. It is one
of the main goals of this part to characterize various properties of point arrangements, graph
realizations and polytopes in terms of their arrangement space.

In Chapter 2 we introduce spectral and balanced graph realizations. We show that com-
bined vertex- and edge-transitivity is not sufficient to ensure that a realization is spectral,
but we show that distance-transitivity, an even stronger form of symmetry, is sufficient in
this sense (cf. Question 6). Already here we can present a procedure by which to verify that
certain polytopes are spectral, including the regular polytopes.

Part I culminates in Chapter 3, in which we properly define eigenpolytopes and spectral
polytopes as well as provide an extensive literature overview. We then present a purely
geometric criterion for the identification of θ2-spectral polytopes and apply it to polytopes
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with combined vertex- and edge-transitivity. This shows that this symmetry class is indeed
sufficient in the sense of Question 3.

The following are the main achievements of Part I:

• The introduction of the arrangement space and its use in connecting symmetry, rigidity
and spectral properties of point arrangements, graph realizations and polytopes.

• The identification of symmetries that are sufficient for a graph realization or polytope
to be spectral. For example, we find that distance-transitivity is sufficient for graph re-
alizations.

• The development of a geometric criterion for the identification of spectral polytopes and
the application of this criterion to polytopes of combined vertex- and edge-transitivity.
We shall find that such polytopes are θ2-spectral, and thereby, are uniquely determined
by their edge-graphs and realize all the symmetries of their edge-graphs.

• The identification of graph symmetries that cannot be geometrically separated from the
other symmetries of the graph.

More generally, we demonstrate that the methods of spectral graph theory add to the tool-
box of proof techniques for polytope theory.

Part II

Motivated by the findings that edge-transitivity has a special connection with spectral prop-
erties, Part II focuses on the investigation of this symmetry class.

In Chapter 4 we give a general introduction to transitivity phenomena in convex polytopes
and conclude that these are still badly understood. We then focus mainly on edge-transitivity.
We introduce a hierarchical classification scheme for the systematic investigation of this sym-
metry class. We take a detailed look at each level of the proposed hierarchy, which includes
polytopes that are simultaneously vertex- and edge-transitive, arc-transitive, half-transitive
and distance-transitive. We give a complete classification of all distance-transitive polytopes,
and we state a conjecture about the classification of arc-transitive polytopes. We explore the
potential consequences of this conjecture.

One of the main aspects of this classification scheme had to be postponed until later chap-
ters, namely, the classification of edge-transitive polytopes that are not vertex-transitive. The
proof of this classification, which is quite technical at some points, will be our main occupa-
tion for the rest of this part.

In the first step we have to study a seemingly unrelated problem. In Chapter 5 we prove a
classification of zonotopes under additional constraints, e.g. vertex-transitive zonotopes and
inscribed zonotopes that have all edges of the same length. While not quite evident at this
point, results of this chapter will be a major ingredient in Chapter 6, where we finally achieve
the complete classification of edge-transitive polytopes that are not vertex-transitive. In
particular, we find that all edge-transitive polytopes in dimension d ≥ 4 are vertex-transitive.

The following are the main achievements of Part II:

• The organization of edge-transitive polytopes into the proposed hierarchy.
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• The derivation of several deep properties of edge-transitive polytopes that can current-
ly only be achieved with the methods of spectral graph theory.

• The conjecture for the complete classification of arc-transitive polytopes.

• The complete classification of distance-transitive polytopes.

• The complete classification of edge-transitive polytopes that are not vertex-transitive.

• The complete classification of vertex-transitive zonotopes, and the complete classifica-
tion of inscribed zonotopes in which all edges are of the same length. As a side result
we obtain a new characterization for root systems and a classification of hyperplane
arrangements whose symmetries act transitively on their chambers.

Appendix

We included an extensive appendix, containing introductions to matrix groups and represen-
tations (Appendix A), spectral graph theory (Appendix B), polytope theory (Appendix C),
root systems and reflections groups (Appendix D) as well as Wythoffian polytopes, including
regular and uniform polytopes (Appendix E).

The appendix further includes a short Mathematica script for the computation of spectral
graph realizations and eigenpolytopes (Appendix F), as well as some longer calculations that
would have interrupted the flow of the main text (Appendix G).

Some notes on notation

Most of the notation and terminology in this thesis is standard or will be explained at first use.
Any unexplained notation and terminology can be found in

• [20] for general graph theory,

• [30] for algebraic graph theory and highly symmetric graphs,

• [15] for spectral graph theory,

• [79] for general polytope theory,

• [18] for the terminology of regular and uniform polytopes.

Still, to be on the same page with the reader, some of the most basic notations we shall in-
troduce already now.

By G = (V, E) we will denote a finite simple graph with vertex set V = {1, ..., n} and edge
set E ⊆

�V
2

�

. An edge {i, j} ∈ E will be denoted by i j ∈ E, and the vertices i, j ∈ V are said to
be adjacent. The neighborhood of a vertex i ∈ V is defined as

N(i) := { j ∈ V | i j ∈ E}.

By Sym(V ) we denote the symmetric group on the vertex set of G, that is, the group of
permutations of V . The (combinatorial) symmetry group of G is the set of permutations of
V that preserves adjacency, that is,

Aut(G) := {σ ∈ Sym(V ) | i j ∈ E⇔ σ(i)σ( j) ∈ E}.

22



A graph is vertex-transitive if Aut(G) acts transitively on V , that is, if for any two i, j ∈ V there
is a σ ∈ Aut(G) with σ(i) = j. Like-wise, a graph is edge-transitive if Aut(G) acts transitively
on its edges.

For d ≥ 1, let P ⊂ Rd denote a (convex) polytope, that is, the convex hull of finitely many
points. We assume that the vertices v1, ..., vn ∈ P are labeled from an index set V = {1, ..., n}.
By F(P) we denote the set of faces (or face lattice) of P, and by Fδ(P) we denote the subset
of δ-dimensional faces. By GP we denote the edge-graph of P, which we consider as a purely
combinatorial graph with vertex set V = {1, ..., n} as before. Each i ∈ V is assigned to the
vertex vi ∈ F0(P). By skeleton of P we mean the map

skP : V → Rd , i 7→ vi

In particular, i j ∈ E if and only if conv{vi , v j} ∈ F1(P) is an edge of P.
For our purpose, a symmetry of a polytope is an orthogonal transformation that fixes the

polytope set-wise. That is, its (orthogonal) symmetry group is

Aut(P) := {T ∈ O(Rd) | T P = P}.

Note that these symmetries fix the origin, and so the group is not invariant under translation
of P. Vertex- and edge-transitivity for polytopes is defined parallel to graphs.

Publications

This thesis is in parts a compilation of the previous publications [74–78], but contains also
large chunks of revised and rewritten material. In particular, the terminology and notation
was unified and most proofs have been rewritten.

• Chapter 1 follows the theory developed in [76], though has some novel features such as
the section on separation of symmetries (Section 1.3) and its discussion of transitivity
and exceptional rigidity (Section 1.5).

• Chapter 2 is based on [78] but was completely rewritten.

• Chapter 3 is based on [75] but was completely rewritten.

• Parts of Chapter 4 are also contained in [75] (the properties of simultaneously vertex-
and edge-transitive polytopes in Theorem 4.5, as well as the classification of distance-
transitive polytopes in Theorem 4.18), but most of this chapter is unique to this thesis
(most notably, the classification scheme for edge-transitive polytopes, as well as the
discussion on arc-transitivity and the conjectured classification).

• The classification of vertex-transitive zonotopes in Chapter 5 can also be found in [74]
(which has since been accepted at Discrete & Computational Geometry).

• Chapter 6 can also be found in [77].
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Part I

Spectrum and Symmetry
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1 Point Arrangements

For this chapter we study the simplest geometric objects for which we can meaningfully talk
about notions like symmetry and rigidity – finite sets of points in Euclidean spaces. In many
cases one can imagine these points to originate as the vertex set of a convex polytope. The
(Euclidean) symmetries of such a “point arrangement” are isometries of the ambient space
that permute the points, and aiming to preserving these symmetries is enough to have a no-
tion of rigidity.

The purpose of this chapter is mainly preparatory – to introduce a convenient language to
be carried over into the upcoming chapters on graph realizations and spectral polytopes. Our
tools are largely linear algebra and real representation theory. The introduced language is
not conceptually new in many aspects (it shares parallels to, for example, finite frame theory
[13,72,73]), but to emphasize the geometric perspective, and in order to be self-contained,
it is developed with great care, detailed proofs and many examples and illustrations.

The central object of this chapter are point arrangements which are families of finitely many
points in Euclidean space. We assume that these points are labeled with natural numbers
from an index set V = {1, ..., n} (motivated by later use, V stands for “vertex set”).

Definition 1.1. A d-dimensional (point) arrangement is a map v : V → Rd .

Figure 1.1. In depictions of point arrangements we usually assume that the arrange-
ment is centered at the origin. We use lines to hint to an intended geom-
etry. These lines are for visualization purpose only and are not part of the
arrangement. The points are often labeled 1, ..., n, even though they are
v1, ..., vn ∈ Rd .

The points in an arrangement v are denoted v1, ..., vn ∈ Rd . Throughout this thesis, n shall
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1 Point Arrangements

always denote the number of these points (and later the number of vertices in a graph or poly-
tope) and d shall always denote the dimension of the ambient space.

The points of an arrangement can further be organized as the rows of a matrix

Φ :=





v1
...
vn



 ∈ Rn×d (1.1)

which we shall call the arrangement matrix of v. An arrangement is called full-dimensional
if span v := span{v1, ..., vn}= Rd , or equivalently, if rankΦ= rankΦ> = d.

Chapter overview

Section 1.1 introduces the arrangement space of a point arrangement, a tool to discuss sym-
metry, spectral properties, rigidity etc. under a common terminology. Over the course of
Part I we develop a “dictionary”, the arrangement space dictionary, to translate between the
properties of an arrangement and the properties of its arrangement space.

From Section 1.2 on we work with symmetric arrangements, the points of which can be
permuted in prescribed ways by isometries of the ambient space. We characterize them via
their arrangement spaces.

In Section 1.3 we discuss the geometric separation of symmetries as asked for in Question 8.
We elaborate how this question has appeared before in the form of symmetry classification
problems. We prove a criterion for geometric separation in terms of arrangement spaces.

In Section 1.4 we explore the rigidity theory of symmetric arrangements (cf. Question 7):
we ask under which conditions an arrangement can be deformed without loosing its pre-
scribed symmetries. If it cannot be deformed, we consider it a rigid arrangement. We prove
that rigidity depends on the number and relative placement of invariant subspaces in Rn.

In Section 1.5 we address the special case of transitive arrangements, in which any two
points are identical under symmetry. We show that transitive arrangements provide the
natural setting in which to expect rigidity. We formulate simple criteria by which to judge
the rigidity of transitive arrangements. We briefly address exceptional rigidity.

1.1 The arrangement space

To each arrangement v we can assign a linear subspace U := spanΦ ⊆ Rn, called its arrange-
ment space, defined as the column span of the arrangement matrix Φ.

The arrangement space is a straightforward, yet very useful tool for working with point
arrangements, and later, graph realizations and polytopes. It enables us to study those ob-
jects up to certain irrelevant transformations and it unifies the language we use to talk about
symmetries, spectral properties, rigidity etc.

The arrangement space surely cannot capture all the information of an arrangement and
therefore does not allow us to reconstruct it. In fact, for each (non-zero) subspace U ⊆ Rn

there are many arrangements which have U as its arrangement space:
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1.1 The arrangement space

Construction 1.2. Choose a basis u1, ..., ud ∈ Rn of U and let Φ := (u1, ...,ud) ∈ Rn×d be the
matrix in which the ui are the columns. Then U = spanΦ. If we now define vi as the i-th row
of Φ, we find that v is an arrangement with arrangement matrix Φ, and thus, arrangement
space U .

We see that any choice of a basis of U gives us a distinct arrangement with arrangement
space U . Let us call two arrangements equivalent if they have the same arrangement space.
Whether two arrangements are equivalent is then a matter of basic linear algebra. Consider
the following well-known theorem:

Theorem 1.3. Two matrices Φ,Φ′ ∈ Rn×d have the same column span if and only if their rows
are related by an invertible linear transformation, i.e., Φ> = XΦ′> for some X ∈ GL(Rd).

This statement is sufficiently standard, so that we did not include a proof. Later we shall
give a proof for a more specialized version (see Lemma 1.10).

Note that for arrangements v and v′ with arrangement matrices Φ and Φ′ the statement
Φ> = XΦ′> resp. Φ = Φ′X> translates to vi = X v′i for all i ∈ V , or v = X v′ for short. Using
Theorem 1.3 this immediately yields

Corollary 1.4. Two arrangements v, v′ : V → Rd are equivalent (have the same arrangement
space) if and only if they are related by an invertible linear transformation, i.e., v = X v′ for
some X ∈ GL(Rd).

The arrangement space determines an arrangement up to invertible linear transformations.
Rather than a shortcoming, this is a useful feature in many cases. For example, if one only
cares about linear, affine or convex dependencies between points, rather than their exact
positioning, then the arrangement space carries all the information one needs.

For our purpose however, ignorance up to invertible linear transformations is not always
appropriate. For example, the arrangement space cannot distinguish between (the vertex set
of) a rhombus, a rectangle and a square, even though these shapes are very different from a
symmetry perspective (e.g. only the rhombus is not vertex-transitive).

If we decide that metric properties like angles and lengths are important for us and should
be preserved among all equivalent arrangements, then we can make this happen by working
with a smaller class of arrangements.

For a linear subspace W ⊆ Rd , let πW denote the orthogonal projection onto W .

Definition 1.5. Let v be an arrangement with arrangement matrix Φ.

(i) v is called spherical, if Φ>Φ= απW for some W ⊆ Rd and α > 0.

(ii) v is called normalized, if Φ>Φ= πW for some W ⊆ Rd .
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1 Point Arrangements

Figure 1.2. On the left a non-spherical arrangement, and on the right its spherical coun-
terpart.

Geometrically, the points in a spherical/normalized arrangement are distributed as isotrop-
ically as possible inside of their linear span, that is, the arrangement appears not stretched
or squeezed in any direction. This follows essentially from the fact that Φ>Φ is (up to some
factor) the covariance matrix of the point cloud v.

Normalized arrangements are spherical arrangements of a preferred scale (every spherical
arrangement can be uniformly scaled into a normalized arrangement). But more generally,
one can view normalized arrangements as a normal form of general arrangements: every
arrangement is equivalent to a (full-dimensional) normalized arrangement.

Construction 1.6. Choose an orthonormal basis u1, ..., uδ ∈ Rn of the arrangement space U
of v. Let v′ be the δ-dimensional arrangement with arrangement matrix Φ′ := (u1, ...,uδ) ∈
Rn×δ. By construction, v′ has arrangement space U = spanΦ′, and so v and v′ are equivalent.
Since the columns of Φ′ are an orthonormal basis, Φ′>Φ′ = Id, which is the special case of
Φ′>Φ′ = πW for W = Rδ. Thus, v′ is normalized. Since rankΦ′ = δ, v′ is full-dimensional.

In particular, every subspace U ⊆ Rn is the arrangement space of a normalized arrange-
ment, and one such can be obtained by using Construction 1.2 with an orthonormal basis.

Example 1.7. A generic rhombus or rectangle (that is, the arrangement of its vertices) is not
spherical. Applying Construction 1.6 yields a square in both cases and this square is then
spherical. More generally, the vertices of any regular polygon, Platonic solid or regular poly-
tope in a higher dimension yield a spherical arrangement.

If v is full-dimensional, then the definition of “normalized” simplifies to Φ>Φ = Id. This
will be the most common case. The more general definition as given in Definition 1.5 has the
advantage that projections of spherical arrangements are spherical again. This can be quite
convenient. We prove this property in Proposition 1.9.

The following algebraic properties of normalized/spherical arrangements will be of great
use:

Observation 1.8. Let v be normalized (it works analogously for spherical v) with arrange-
ment matrix Φ. The following properties follow via basic linear algebra:

(i) by definition, Φ>Φ = πW for some W ⊆ Rd , and one can show that W = span v =
spanΦ> is the smallest subspace of Rd that contains all the points of the arrangement.

(ii) ΦΦ> = πU , where U ⊆ Rn is the arrangement space of v.

Proposition 1.9. If v is spherical resp. normalized and W ′ ⊆W := span v, then the projection
v′ := πW ′ v is spherical resp. normalized as well.
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1.1 The arrangement space

Proof. The arrangement v′ := πW ′ v has arrangement matrix Φ′ := ΦπW ′ . It follows

Φ′>Φ′ = πW ′Φ>ΦπW ′ = πW ′απWπW ′
(∗)
= απW ′

where in (∗) we used that after projecting onto W ′, a subsequent projection onto W ⊇ W ′

does nothing. Likewise a third projection onto W ′ does nothing.

Our main reason for introducing spherical and normalized arrangements was to define a
class of arrangements for which the arrangement space determines metric properties. And
indeed, such arrangements are determined by their arrangement space up to orientation (if
normalized) resp. up to orientation and scale (if spherical):

Lemma 1.10. Let v, v′ : V → Rd be two normalized arrangements, then the following are equiv-
alent:

(i) v and v′ are equivalent (i.e., they have the same arrangement space), and

(ii) X v = v′ for some orthogonal transformation X ∈ O(Rd).

Proof. Let Φ,Φ′ be the arrangement matrices of v resp. v′, and U , U ′ ⊆ Rn the corresponding
arrangement spaces. Note also that (ii)=⇒ (i) already follows from Corollary 1.4.

For the other direction set W := span v and W ′ := span v′. Then dim W = dim U = dim W ′,
and therefore also dim W⊥ = dim W ′⊥.

For the next step we need to choose a normalized arrangement w: V → Rd with span w=
W⊥. Such exist: choose any full-dimensional normalized arrangement constructed via Con-
struction 1.6 and project it onto W⊥ (and use Proposition 1.9). Since W⊥ and W ′⊥ are of
the same dimension, we can reorient w via an orthogonal transformation to an arrangement
w′ with span w′ =W ′⊥. By (ii)=⇒ (i) w and w′ have the same arrangement space Ū ⊆ Rn.

Let Ψ and Ψ′ be the arrangement matrices of w and w′ respectively and define

X := Φ′>Φ+Ψ′>Ψ.

We show that this is the desired orthogonal transformation to establish (ii). We first show
that indeed X v = v′:

XΦ> = Φ′>ΦΦ> +Ψ′>ΨΦ>
(∗)
= Φ′>πU + 0= (πUΦ

′)>
(∗∗)
= Φ′>,

where in (∗) we used ΦΦ> = πU (see Observation 1.8) and ΨΦ> = 0 (the rows of Φ and Ψ
are in orthogonal subspaces). In (∗∗) we used that πUΦ

′ = Φ′ since spanΦ′ = U .
Similar use of the analogous identities for Φ′,Ψ and Ψ′ shows that X is orthogonal:

X>X = (Φ′>Φ+Ψ′>Ψ)>(Φ′>Φ+Ψ′>Ψ)

= Φ>Φ′Φ′>Φ + Φ>Φ′Ψ′>Ψ + Ψ>Ψ′Φ′>Φ + Ψ>Ψ′Ψ′>Ψ

= Φ>πUΦ+ 0+ 0+Ψ>πŪΨ

= Φ>Φ+Ψ>Ψ = πW +πW⊥ = Id
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1 Point Arrangements

One goal of the first two chapters is to build a dictionary that translates between proper-
ties of arrangements (resp. graph realizations) and properties of their arrangement spaces.
This includes properties about symmetry and rigidity, but also metric properties. A trivial
example is, if v is full-dimensional, then its dimension matches dim U . If v is normalized,
then Lemma 1.10 tells us that the arrangement space also determines metric properties. For
example, the radius r(v) of an arrangement is defined as

[r(v)]2 :=
1
n

n
∑

i=1

‖vi‖2 =
1
n

tr(Φ>Φ) =
1
n

tr(ΦΦ>)
(∗)
=

1
n

tr(πU) =
dim U

n
, (1.2)

where (∗) applies if v is normalized. This definition is useful when working with inscribed
arrangements, i.e., all vertices are on a sphere around the origin. Then r(v) is the radius of
that sphere.

1.2 Symmetric arrangements

A (Euclidean) symmetry of a point arrangement is an isometry (that is, a distance preserving
transformation) of the ambient space, so that points of the arrangement are again mapped
onto points of the arrangement. That is, a symmetry permutes the points.

Figure 1.3. If four points are arranged in the shape of a square like shown in the figure,
then certain permutations of these points can be achieved by rigid motions
of the square (rotations and reflections in the three left most images), but
others cannot (the permutation in the right most image).

In this section we study point arrangements with prescribed symmetries. That means we
prescribe permutations (actually, whole groups Σ ⊆ Sym(V ) of permutations) that must be
realized by an isometry of the ambient space. Slightly stronger, we require these isometries
to be orthogonal transformations. Arrangements with prescribed symmetries will be shortly
called symmetric arrangements.

To give a more formal definition, recall that an (orthogonal) representation T : Σ→ O(Rd)
of a permutation group Σ ⊆ Sym(V ) is a group homomorphism into the orthogonal group
O(Rd) (for a sufficient introduction to representation theory, see Appendix A).

Definition 1.11. Let Σ ⊆ Sym(V ) be a permutation group on the index set V .
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1.2 Symmetric arrangements

A Σ-arrangement is an arrangement v for which there exists a (linear orthogonal) repre-
sentation T : Σ→ O(Rd) with

Tσvi = vσ(i), for all i ∈ V and σ ∈ Σ.1 (1.3)

T is called a representation of v. A (non-zero) Σ-arrangement is called irreducible if the
subspace span v ⊆ Rd is T -irreducible. It is called reducible otherwise.

We emphasize that the representation T : Σ → O(Rd) of a Σ-arrangement maps to the
orthogonal matrices. This is purely a design choice: one could develop a completely parallel
theory using representations T : Σ→ GL(Rd) instead. However, orthogonal transformations
are closer to how we often think of geometric symmetries as rigid motions. All in all, this
choice comes with no loss of generality, it makes some computations and proofs simpler, but
requires more work at other places.

While the representation of a Σ-arrangement might not be unique, its action on span v is
unique. Whether T acts irreducibly on span v is therefore independent of the choice of the
representation, and hence the notion of irreducibility for Σ-arrangements is well-defined.

Equation (1.3) can be compactified using the arrangement matrix Φ of v: TσΦ
> = Φ>Πσ

for all σ ∈ Σ, where Πσ ∈ Perm(Rn) denotes the permutation matrix corresponding to σ.
By transposing both sides of the equations, and using T>σ = Tσ−1 , Π>σ = Πσ−1 and σ ∈ Σ⇔
σ−1 ∈ Σ, we arrive at the following equivalent form:

ΦTσ = ΠσΦ, for all σ ∈ Σ. (1.4)

Interpreting (1.4) in the language of representation theory, the arrangement matrix serves
as an equivariant map Φ: Rd → Rn between the representation T and the permutation rep-
resentation σ 7→ Πσ (cf. Definition A.7).

We can characterize symmetric arrangements via their arrangement space. Recall that a
Σ-invariant subspace U ⊆ Rn satisfies ΠσU ⊆ U for all σ ∈ Σ (see Definition A.2).

Lemma 1.12. Let v be an arrangement.

(i) If v is a Σ-arrangement, then its arrangement space is a Σ-invariant subspace of Rn.

(ii) If v is spherical and its arrangement space is Σ-invariant, then v is a Σ-arrangement.

Together, (i) and (ii) almost provide a perfect characterization, except that we need v to be
spherical in (ii). For spherical arrangements being aΣ-arrangement and having aΣ-invariant
subspace is equivalent, which provides an entry to our “arrangement space dictionary”.

Proof of Lemma 1.12. Suppose that v is aΣ-arrangement with representation T and arrange-
ment space U := spanΦ. Recall Theorem 1.3, that Φ and ΦTσ have the same column span
because Tσ is invertible. We use this fact in (∗):

ΠσU = span(ΠσΦ)
(1.4)
= span(ΦTσ)

(∗)
= spanΦ= U , for all σ ∈ Σ.

1For representations, we write Tσ instead of T (σ).
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1 Point Arrangements

Thus, U is Σ-invariant, which proves (i).
For (ii), assume that the arrangement space U ⊆ Rn is Σ-invariant and that v is spheri-

cal. W.l.o.g. assume that v is even normalized, that is, Φ>Φ = πW , where W := span v by
Observation 1.8. The crucial step is to define

Tσ := Φ>ΠσΦ+πW⊥ , for each σ ∈ Σ.

It remains to prove that this defines an orthogonal representation T that satisfies (1.4). We
show (1.4) by expanding the definition of T :

ΦTσ = ΦΦ
>ΠσΦ+ΦπW⊥

= ΦΦ>ΠσΦ+ 0 by ΦπW⊥ = (πW⊥Φ>)> = 0 since spanΦ> =W

= πUΠσΦ by ΦΦ> = πU from Observation 1.8 (ii)

= ΠσπUΦ by πUΠσ = ΠσπU since U is Σ-invariant

= ΠσΦ by πUΦ= Φ since spanΦ= U .

The same arguments using properties of Φ and Πσ show that Tσ is orthogonal (which we
prove with less explicit detail):

T>σ Tσ = (Φ
>ΠσΦ+πW⊥)>(Φ>ΠσΦ+πW⊥)

= Φ>Π>σΦΦ
>ΠσΦ + Φ

>Π>σΦπW⊥ + π>W⊥Φ
>ΠσΦ + π

>
W⊥πW⊥

= Φ>Π>σπUΠσΦ+ 0+ 0+πW⊥

= Φ>Π>σΠσπUΦ+πW⊥

= Φ>Φ+πW⊥ = πW +πW⊥ = Id .

The proof of TσTτ = Tστ is analogous.

The condition “spherical” is necessary in (ii): a (generic) rectangle is just a linear transfor-
mation of a square, which means both share the same arrangement space. But clearly they do
not share the same symmetries. In a sense, spherical arrangements are the most symmetric
arrangements (in the Euclidean sense) among their equivalent counterparts.

Figure 1.4. The permutation σ = (1234) can be realized for the square by a rotation,
but not for the rectangle, even thoughΠσ preserves the arrangement spaces
of both arrangements. The reason is that the rectangle is not spherical.

We show that irreducible Σ-arrangements are always spherical. Recall that a Σ-invariant
subspace is Σ-irreducible if it does not contain a non-zero proper Σ-invariant subspace.
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Lemma 1.13. Given an arrangement v, the following are equivalent:

(i) v is an irreducible Σ-arrangement,

(ii) v is spherical and its arrangement space U ⊆ Rn is Σ-irreducible.

Proof. Suppose (i) that v is an irreducible Σ-arrangement with representation T . If Φ is its
arrangement matrix, then applying (a variant of) (1.4) twice gives

TσΦ
>Φ= Φ>ΠσΦ= Φ

>ΦTσ.

We see thatΦ>Φ commutes with Tσ for allσ ∈ Σ. As a consequence, every eigenspace ofΦ>Φ
is T -invariant. One such eigenspace is kerΦ to eigenvalue zero. Since Φ>Φ is symmetric and
positive semi-definite, any other eigenspace Eig(α) corresponds to some positive eigenvalue
α > 0 and must be contained in W := (kerΦ)⊥ = span v. Since v is irreducible, T acts
irreducibly on W , and so W cannot have a proper invariant subspaces. But Eig(α) is an
invariant subspace of W , and therefore W = Eig(α). To summarize, Φ>Φ has exactly two
eigenvalues, 0 and α > 0, and can therefore be written in the form Φ>Φ = απW + 0πW⊥ =
απW . Hence, v is spherical. This shows one part of (ii).

For the other part, consider the arrangement matrix as a linear isomorphism Φ: W → U
with W := span v and U ⊆ Rn the arrangement space. Since W is T -invariant, T restricts to
a Σ-representation T |W : Σ→ O(W ) on W . Likewise, since U is Σ-invariant (by Lemma 1.12
(i)) we obtain the restricted Σ-representation σ 7→ Πσ|U ∈ O(U). By (1.4) Φ can be inter-
preted as an invertible equivariant map, establishing that these restricted representations are
isomorphic. In particular, one is irreducible if and only if the other one is.

The claim then follows easily: if v is irreducible, then W is T -irreducible. By the isomor-
phism, U is Σ-irreducible. This proves (ii).

Now assume (ii) that v is spherical and U is Σ-irreducible. In particular, U is Σ-invariant.
By Lemma 1.12 (ii), v is then a Σ-arrangement with some representation T . We have just
shown that if U is Σ-irreducible, then W := span v is T -irreducible. This shows (i).

The previous results (Lemma 1.12 and Lemma 1.13) in conjunction with Construction 1.2
provide an explicit way to construct Σ-arrangements as soon as we have access to the Σ-
invariant subspaces. This is especially useful in the presence of an additional graph structure:
as we discuss in Chapter 2, the eigenspaces of a graph G provide easy access to some of the
Aut(G)-invariant subspaces.

Example 1.14. Consider the groupΣ := 〈(1234)〉 ⊆ Sym(V ) on V = {1,2, 3,4} generated by
a single cyclic permutation (1234) ∈ Sym(V ). One can show that R4 decomposes uniquely
into three Σ-irreducible subspaces U1, U2, U3 ⊆ R4

U1 = span{ (1, 1, 1, 1)> }

U2 = span{ (1,−1, 1,−1)> }

U3 = span{ (1, 1,−1,−1)>, (1,−1,−1, 1)> }

Via Construction 1.2 those translate to the following Σ-arrangements:
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Note that several points can be positioned on top of each other. The subspace U1 is invariant
for every Σ and corresponds always to the arrangement with all vertices at a single point.

Since U1, U2 and U3 are the only Σ-irreducible subspaces, this is a complete list of irre-
ducible Σ-arrangements up to equivalence (by Lemma 1.13).

The remaining Σ-arrangements (the reducible ones) have arrangements spaces U1 ⊕ U2,
U1⊕U3, U2⊕U3 and U1⊕U2⊕U3 = Rn. The figure below depicts an arrangement to U2⊕U3.
It projects to the two arrangements it is built from.

Another way to construct Σ-arrangements is via a given Σ-representation T :

Construction 1.15. Suppose that we are given a permutation group Σ ⊆ Sym(V ) and a
representation T : Σ→ O(Rd) thereof. Our goal is to construct a Σ-arrangement with repre-
sentation T .

Consider the decomposition V = V1 ·∪ · · · ·∪ Vm of V into its Σ-orbits and fix an ik ∈ Vk for
each k ∈ {1, ..., m}. The idea is to define a Σ-arrangement v by choosing the vik more or less
freely and let the other points be determined by T (see also Figure 1.5).

A completely free choice of the vik might not be possible though: let Σi := {σ ∈ Σ | σ(i) =
i} denote the stabilizer of Σ at i. Then for any σ ∈ Σik there must hold

Tσvik = vσ(ik) = vik .

In other words, vik must be chosen from the fix space

Fix(T,Σik) := {x ∈ Rd | Tσx = x for all σ ∈ Σik}=
⋂

σ∈Σik

ker(Id−Tσ),

which is itself a linear subspace of Rd .
Since Vk is an orbit, for any i ∈ Vk there exists a σi ∈ Σ with σi(ik) = i. If we now choose

points xk ∈ Fix(T,Σik) for all k ∈ {1, ..., m}, we can define

vi := Tσi
xk, whenever i ∈ Vk.
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1.3 Separating symmetries

Figure 1.5. Visualization of Construction 1.15 using Σ := 〈(135)(246), (12)(36)(45)〉.
Only the white point was chosen freely. If the Tσ,σ ∈ Σ include reflections
on the three gray lines, then the black points are enforced by the assumption
that v is a Σ-arrangement with representation T .

It is then easy to show that v is a Σ-arrangement with representation T and vik = xk for all
k ∈ {1, ..., m}. One can show that the definition is independent of the choice of the σi .

Note that a necessary criterion for the existence of a non-zero Σ-arrangement with repre-
sentation T is that Fix(T,Σik) 6= {0} for some k ∈ {1, ..., m}.

1.3 Separating symmetries

We have developed enough terminology to discuss Question 8 raised in the introduction: how
to detect whether two permutation groups can be “separated geometrically”. In the language
of point arrangements, this reads

Question 1.16. Given a permutation group Σ ⊂ Sym(V ). When does it happen that every
Σ-arrangement is also a Σ′-arrangement for a larger group Σ′ ⊃ Σ?

Example 1.17. Each arrangement in Example 1.14 has a symmetry that permutes its points
by (12)(34) 6∈ Σ (which might be the identity transformation). That is, Σ := 〈(1234)〉 cannot
be separated geometrically from the larger group Σ′ := 〈(1234), (12)(34)〉 (the dihedral
group on four elements).

The same phenomenon happens for all cyclic groups Σ := 〈(123 · · ·n)〉, n≥ 3.

Recall that the initial motivation for Question 8 resp. Question 1.16 was the observation
that a “sufficiently large” group Σ ⊂ Aut(G) of symmetries of a graph G cannot be geomet-
rically separated from Aut(G) itself, where the meaning of “sufficiently large” depends on
spectral properties of G. We come back to this in Chapter 2. For now we shall take a look at
how Question 1.16 is related to the classification of symmetry groups of geometric objects,
and how similar questions have been asked and answered in the literature before.

Group theory is often motivated as the study of symmetries of discrete or geometric objects,
such as graphs or polytopes. However, the modern definition of an abstract group makes no
use of this connection, and so one might ask whether this motivation is still justified.

Given an abstract group G, is there a graph/polytope whose symmetry group is
isomorphic to G?
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These questions have since been answered in the affirmative (for graphs [27] and for poly-
topes [67]), and the focus shifted to modified versions of these questions.

For one possible modification, we restrict to a proper sub-class of polytopes (or graphs).
For example, not every finite group appears as the symmetry group of a vertex-transitive
polytope (a polytope with a single orbit of vertices, see also Definition 2.14). Most cyclic
groups are such exceptions.

Figure 1.6. The polygons with the black outline have no mirror symmetry, and Aut(P)
is isomorphic to a cyclic group. These polygons are not vertex-transitive as
there are interior angles of different sizes.

A complete classification of these exceptions has been obtained in [2], and in a slightly
more general setting (linear symmetries instead of Euclidean symmetries) in [24–26]. Some
work has been done for centrally symmetric polytopes in [14].

Another way to modify the polytope version of the question is to replace abstract groups
with something more concrete like matrix groups of permutation groups:

• Given a matrix group Γ ⊆ O(Rd), is there a polytope P ⊂ Rd with Aut(P) = Γ (identical
as matrix groups, not just isomorphic)?

The answer to this question is affirmative too. Take a sufficiently large set of generically
chosen points x1, ..., xm ∈ Sd−1 ⊂ Rd on the unit sphere, and define P := conv{T x i |
T ∈ Γ , i ∈ {1, ..., m}}. Then Aut(P) = Γ holds almost surely.

This question has also been asked for vertex-transitive polytopes (see e.g. [24, Chapter
7] for an algebraic approach, or see [23] for unitary symmetry groups).

• Given a permutation groupΣ ⊆ Sym(V ), is there a polytope P whose vertices v1, ..., vn ∈
F0(P) are permuted by Aut(P) exactly in the ways described by Σ?

That is, all permutations of Σ are realized by Aut(P), but also, no other permutations
are realized besides these.

Given that a polytope, and its symmetry too, is completely determined by its vertices, all
these questions have an equivalent formulation in terms of point arrangements. In particular
the permutation group version, expressed for Σ-arrangements, becomes

Given a permutation group Σ ⊆ Sym(V ), is there a Σ-arrangement that is not a
Σ′-arrangement for any larger group Σ′ ⊃ Σ?

This is just another formulation of Question 1.16. We have then seen that classifying possible
symmetries of geometric objects might require an explanation for why certain symmetries
cannot be “separated” from larger symmetry groups. For example, Example 1.17 shows that
Σ := 〈(1234)〉 cannot be the full (permutation) symmetry group of any arrangement.
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1.3 Separating symmetries

To our knowledge “realizable permutation groups” have not been classified, and it could
be infeasible to do so.

For later use we prove a criterion for detecting separation of symmetries using the arrange-
ment space (see Theorem 1.19). We need the following technical proposition:

Proposition 1.18. Let v : V → Rd be a point arrangement.

(i) If v is a Σ-arrangement with representation T, and W ⊆ Rd is a T-invariant subspace,
then v′ := πW v is also a Σ-arrangement. If W is T-irreducible, then v′ is an irreducible
Σ-arrangement.

(ii) Let Rd = W1 ⊕ · · · ⊕Wm be a decomposition of Rd into pair-wise orthogonal subspaces
W1, ...,Wm ⊆ Rd . If vk := πWk

v is a Σ-arrangement for all k ∈ {1, ..., m}, then so is v.

Proof. Let v be aΣ-arrangement with representation T , and W ⊆ Rd a T -invariant subspace.
We show that v′ := πW v is a Σ-arrangement with the same representation:

Tσv′i = TσπW vi = πW Tσvi = πW vσ(i) = v′
σ(i),

where πW commutes with Tσ because W ⊆ Rd is T -invariant.
Suppose now that W is T -irreducible. Since W ′ := span v′ is T -invariant and W ′ ⊆W , we

either have W ′ = {0} or W ′ =W . In either case T acts irreducibly on W ′. This proves (i).
For (ii) let Rd = W1 ⊕ · · · ⊕Wm be a decomposition into pair-wise orthogonal subspaces.

Let T k : Σ→ O(Rd) be the representation of vk := πWk
v. Define

Tσ := T1
σπW1

+ · · ·+ T m
σ πWm

, for all σ ∈ Σ.

We show that v is a Σ-arrangement with representation T :

Tσvi = T1
σπW1

vi + · · ·+ T m
σ πWm

vi

= T1
σv1

i + · · ·+ T m
σ vm

i

= v1
σ(i) + · · ·+ vm

σ(i)

= πW1
vσ(i) + · · ·+πWm

vσ(i)
= (πW1

+ · · ·+πWm
︸ ︷︷ ︸

Id

)vσ(i) = vσ(i).

One checks that Tσ is indeed orthogonal and defines a representation T .

Theorem 1.19. If every Σ-invariant subspace is also Σ′-invariant, then every Σ-arrangement
is also a Σ′-arrangement.

Proof. Suppose that every Σ-invariant subspace of Rn is also Σ′-invariant, and that v is a
Σ-arrangement with representation T .

Then Rd decomposes as a direct sum W1⊕· · ·⊕Wm into pair-wise orthogonal T -irreducible
subspaces W1, ...,Wm ⊆ Rd . Consider the projections vk := πWk

v, which are then irreducible
Σ-arrangements by Proposition 1.18 (i). In particular, they are spherical by Lemma 1.13.
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The arrangement space Uk ⊆ Rn of vk is a Σ-invariant subspace by Lemma 1.12 (i), and by
assumption it is alsoΣ′-invariant. Since vk is spherical, it is aΣ′-arrangement by Lemma 1.12
(ii). We then found that each πWk

v is a Σ′-arrangement for a complete decomposition into
pair-wise orthogonal subspaces W1 ⊕ · · · ⊕Wm, and hence v itself is a Σ′-arrangement by
Proposition 1.18 (ii).

The reason for Σ := 〈(1234)〉 being not geometrically separable from the larger group
Σ′ := 〈(1234), (12)(34)〉 is, that these have the exact same invariant subspaces.

Other examples of this kind will be discussed in Chapter 2 (see especially Section 2.4 and
Corollary 2.35 (ii)).

1.4 Deformation and rigidity

In this section we address Question 7 raised in the introduction: how does symmetry influ-
ence rigidity properties of arrangements? For that purpose we consider continuous defor-
mations of arrangements that preserve their prescribed symmetries (see Definition 1.21 for
formalization of the notions). If no such deformations exist, then the Σ-arrangement can be
considered as rigid, otherwise as flexible.

Example 1.20. Figure 1.5 (on page 37) gives a first impression of how a deformation might
look like. Moving the white point changes the shape of the whole arrangement, but keeps
its representation, and hence, its symmetry. This arrangement is therefore flexible.

In order to make rigidity a meaningful notion, we have to exclude some undesirable “de-
formations”: each arrangement can be “deformed” by a continuous change in scale or ori-
entation. Such should not be considered proper deformations. We observe that a change in
scale or orientation does not change the arrangement space. We can use this to define what
makes a deformation proper: it has to change the arrangement space. This definition would
also recognize other “trivial deformations” as non-proper, such as non-uniform stretching,
shearing, and other more general linear transformations. Note the following subtlety: while
it is straightforward to continuously deform an arrangement v into X v for X ∈ GL(Rd) with
det X > 0, whether such a deformation is possible for det X < 0 is non-trivial. This subtlety
was explored in [76] and we shall exclude it from our discussion.

Similarly undesirable, every Σ-arrangement can be shrunken into a single point, which
is a Σ-arrangement for all Σ. This can be used to transform any Σ-arrangement into any
other Σ-arrangement of the same dimension. For example, the pentagon arrangement can
be transformed into the pentagram arrangement in this way:

40



1.4 Deformation and rigidity

Both are Σ-arrangements for Σ := 〈(12345)〉. No “non-collapsing” deformation exists be-
tween these. Similar problems arise if we allow arrangements to collapse partially in only
some directions. To avoid all these problems entirely, and for maximal simplicity, we may as-
sume that the arrangement is full-dimensional during the whole deformation. In particular,
we shall investigate deformations for full-dimensional arrangements only.

To formalize deformations, we need to declare a topology on the space of arrangements:
the set of d-dimensional arrangements on the index set V = {1, ..., n} can be associated with
its set of arrangement matrices, that is Rn×d . The space Rn×d is naturally equipped with the
topology of a vector space, and we can pull back this topology to the set of arrangements.

For Σ ⊆ Sym(V ) we then study the following subspace of arrangements:

Ad(Σ) := {v : V → Rd | v is a full-dimensional Σ-arrangement}.

We consider Ad(Σ) equipped with the respective subspace topology.

Definition 1.21. Given a Σ ⊆ Sym(V ).

(i) A Σ-deformation is a continuous curve v(·): [0,1]→Ad(Σ). We say that the arrange-
ments v(0) and v(1) can be Σ-deformed into each other.

(ii) A Σ-deformation is proper if not all v(t) are equivalent.

(iii) A Σ-arrangement is said to be Σ-flexible, if it can be Σ-deformed into a non-equivalent
arrangement. Otherwise it is called Σ-rigid.

If Σ is clear from the context we just write deformation, rigid and flexible, etc.

If v(·) is a Σ-deformation, then to each arrangement v(t) we can assign the arrangement
matrix Φ(t) and arrangement space U(t) := spanΦ(t). The map t 7→ Φ(t) is continuous by
definition of the topology onAd(Σ). Since v(t) is full-dimensional we also have dim U(t) = d
for all t ∈ [0,1].

The goal of this section is to work out howΣ-rigidity can be detected from the arrangement
space, contributing to our dictionary. We shall see that this has everything to do with the
number and relative positioning of Σ-invariant subspaces in Rn.

The core intuition is the following: if v(·) is aΣ-deformation, and U(t) ⊆ Rn is the arrange-
ment space of v(t), then intuitively, a continuous change in v(t) comes with a continuous
change in U(t). To make this precise we would need to define a topology on the “space of
linear subspaces of Rn” (this is possible and the space is called the Grassmannian). However,
for our purpose it suffices to observe and formalize the following:

• By Lemma 1.12, each U(t) is Σ-invariant. If v(·) is a proper deformation, then not all
U(t) are the same, and continuity suggests that U(t) attains infinitely many different
values, each of which is aΣ-invariant subspaces ofRn. In particular, there are infinitely
many Σ-invariant subspaces to begin with.

• If U(0) and U(1) are orthogonal, it appears intuitive that as t transitions from 0 to 1,
the angle between U(t) and U(0) cannot suddenly jump from 0◦ to 90◦ but must attain
all intermediate values. We would then expect to find non-orthogonal Σ-invariant sub-
spaces.
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One might assume that every permutation group Σ ⊆ Sym(V ) induces a unique decomposi-
tion of Rn into pair-wise orthogonal Σ-irreducible subspaces (see also Observation A.4). We
shall see that flexibility in arrangements occurs exactly when this intuition fails2.

This is a good moment to recall the following properties ofΣ-invariant subspaces (consider
Appendix A for a complete overview):

• Two irreducible subspaces are either identical or have trivial intersection (see Obser-
vation A.3).

• The projection of an invariant subspace onto an invariant subspace is again invariant
(see Observation A.5), and the projection of an irreducible subspace onto an invariant
subspace is irreducible again (see Proposition A.6).

• If two irreducible subspaces are non-orthogonal, then they are of the same dimension
(see Lemma A.9 (i)).

We first characterize rigidity of a single irreducible arrangement (see Theorem 1.23). Be-
cause its argument is used repeatedly, the following technical proposition is proven sepa-
rately:

Proposition 1.22. Let v(·) be a Σ-deformation and U(t) ⊆ Rn the arrangement space of v(t).
If U ⊆ Rn is a linear subspace, then the sets

I := {t ∈ [0,1] | U(t) ⊆ U} ⊆ [0, 1]

J := {t ∈ [0, 1] | U(t) = U} ⊆ [0, 1]

are closed subsets of [0,1].

Proof. Let Φ(t) be the arrangement matrix of v(t) and let uk(t) be its k-th column. All of
these are continuous functions in t. The set

Ik := {t ∈ [0,1] | uk(t) ∈ U}= u−1
k [U], for k ∈ {1, ..., d}

is the preimage of a closed set U w.r.t. a continuous function uk(·), and is therefore closed in
[0,1]. Since U(t) = span{u1(t), ..., ud(t)} we have U(t) ⊆ U ⇔ u1(t), ..., ud(t) ∈ U . Hence
I = I1 ∩ · · · ∩ Ik and I is closed in [0, 1].

Note that if dim U 6= d then J = ∅, and if dim U = d then I = J , establishing that J is
closed too.

Theorem 1.23. Let v ∈Ad(Σ) be irreducible with arrangement space U ⊆ Rn and representa-
tion T. The following are equivalent:

(i) v is flexible.

(ii) there is a Σ-irreducible subspace U ′ 6= U that is non-orthogonal to U (i.e., U ′ 6⊆ U⊥).

(iii) there is v′ ∈Ad(Σ) that is non-equivalent to v but has the same representation T.
2In the language of character theory, flexibility occurs whenever the character of the permutation representation

is not multiplicity-free. We shall not pursue this perspective but work in terms of invariant subspaces.
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Proof. In the following let Φ denote the arrangement matrix of v. We prove the implications
(i) =⇒ (ii) =⇒ (iii) =⇒ (i).

Assume (i) that v is flexible. Then there is a proper Σ-deformation v(·) with v(0) = v. Let
U(t) ⊆ Rn be the arrangement space of v(t). The sets

I := {t ∈ [0,1] | U(t) ⊆ U⊥},
J := {t ∈ [0,1] | U(t) = U},

are closed by Proposition 1.22. Since U 6= {0}, I and J are clearly disjoint. Furthermore,
I 6= [0,1], and since v(·) is proper we also have J 6= [0,1]. But [0, 1] is connected, and thus
not the disjoint union of two closed proper subsets. So there must be a t ′ ∈ [0,1] \ (I ·∪ J).
Then U ′ := U(t ′) satisfies U ′ 6= U and U ′ 6⊆ U⊥. It remains to show that U ′ is Σ-irreducible.
We know that it is Σ-invariant by Lemma 1.12 (i). It then has a Σ-irreducible subspace
U ′′ ⊆ U ′ which is also non-orthogonal to U . But non-orthogonal irreducible subspaces agree
in dimension (see Lemma A.9 (i)), i.e., dim U ′′ = dim U = d = dim U ′, and thus U ′′ = U ′.
Thus, U ′ is irreducible, which proves (ii).

Next, assume (ii). Let v′ be the arrangement with arrangement matrix Φ′ := πU ′Φ. Since
U and U ′ are non-orthogonal, v′ 6= 0. The non-zero arrangement space of v′ is πU ′U ⊆ U ′.
This is a projection of an invariant subspace onto an invariant subspace, hence itself invariant
(see Observation A.5). But since U ′ is irreducible, it cannot have a proper non-zero invariant
subspace, and so we found that v′ must have arrangement space U ′. Next, we show that v′

is a Σ-arrangement with representation T by showing that (1.4) holds:

Φ′Tσ = πU ′ΦTσ
(∗)
= πU ′ΠσΦ

(∗∗)
= ΠσπU ′Φ= ΠσΦ

′, for all σ ∈ Σ,

where in (∗)we used (1.4) for v, and in (∗∗)we used that πU ′ commutes withΠσ because U ′

is Σ-invariant. It remains to show that v′ is full-dimensional: U and U ′ are non-orthogonal
irreducible subspace. As such they are of the same dimension (see Lemma A.9 (i)). That is,
dim U ′ = dim U = d, and v′ is full-dimensional. This proves (iii).

Finally, assume (iii) and consider the following parametrized arrangement:

v(t) := (1− t)v + t v′, for t ∈ [0,1]. (1.5)

We show that this defines a Σ-deformation. By Tσvi(t) = (1− t)Tσvi + Tσv′i = (1− t)vσ(i)+
v′σ(i) = vσ(i)(t), v(t) is a Σ-arrangement with representation T for each t ∈ [0,1]. It remains
to show that v(t) is full-dimensional. Since T is irreducible and span v(t) is T -invariant, v(t)
must be either full-dimensional or zero. If v(t) = (1− t)v + t v′ = 0, then v = t/(t − 1)v′,
in contradiction to the assumption that v and v′ are non-equivalent. Thus, v(t) is always
a full-dimensional Σ-arrangement (with representation T) and v(·) therefore a proper Σ-
deformation from v into v′, establishing that v is flexible. This proves (i).

Theorem 1.23 is not addressing reducible arrangements. Similar criteria for rigidity could
be written down here, but they are more tedious to formulate precisely. We do not follow
this path as we later focus on irreducible arrangements anyway. Note however that reducible
arrangements can be rigid in a somewhat counter-intuitive way:
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Figure 1.7. The depicted Σ-deformation for Σ := 〈(13)(24)〉 is not proper, even though
it is intuitively “deforming” the arrangement. In fact, this Σ-arrangement
is rigid by our definition. The colors of the points indicate orbits.

The next theorem is similar to Theorem 1.23, but characterizes rigidity for all Σ-arrange-
ments simultaneously.

Theorem 1.24. Given Σ ⊆ Sym(V ), then the following are equivalent:

(i) all v ∈Ad(Σ) are rigid.

(ii) Rn can be written as a direct sum of Σ-irreducible subspaces in a unique way.

(iii) there exist only finitely many Σ-irreducible subspaces.

Proof. We prove (i)=⇒ (ii),(iii), and then (ii)=⇒ (iii)=⇒ (i).
Assume (i) that all (full-dimensional) Σ-arrangements are rigid and let

Rn = U1 ⊕ · · · ⊕ Um (1.6)

be a decomposition into a direct sum of pair-wise orthogonal Σ-irreducible subspaces U1, ...,
Um ⊆ Rn. Let U ⊆ Rn be some Σ-irreducible subspace. According to Theorem 1.23 (ii) =⇒
(i), if U 6= Uk then U and Uk must be orthogonal (as otherwise there are flexible arrange-
ments). Clearly, U cannot be orthogonal to all Uk (as they span all of Rn), and thus U = Uk
for some k ∈ {1, ..., m}.

From this now follows (iii): every irreducible subspace must be one of the Uk, and so there
are only finitely many. To show (ii), note that any other decomposition Rn = U ′1 ⊕ · · · ⊕ U ′m
must use some irreducible subspace not among the Uk. Such do not exist. Since every irredu-
cible subspace is contained in a decomposition of the form (1.6) (see also Observation A.4),
we also obtain (ii)=⇒ (iii).

To establish (iii) =⇒ (i), assume that there are only finitely many irreducible subspaces.
Reducible subspaces are direct sums of irreducible subspaces, and hence there are also only
finitely many Σ-invariant subspaces. Let v(·) be a Σ-deformation. We try to show that v(·)
cannot be proper, establishing (i), that all (full-dimensional) Σ-arrangements are rigid. Let
U(t) ⊆ Rn be the arrangement space of v(t). Since each U(t) is Σ-invariant (by Lemma 1.12
(i)) and there are only finitely manyΣ-invariant subspaces, U(t) can attain only finitely many
values U1, ..., Um ⊆ Rn. The disjoint sets

Ik := {t ∈ [0,1] | U(t) = Uk}, for k ∈ {1, ..., m}

are then closed by Proposition 1.22 and satisfy I1 ·∪· · · ·∪ Im = [0,1]. Since [0,1] is connected,
it cannot be the disjoint union of finitely many closed proper subsets. Hence, one of the Ik
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is not a proper subset, but instead Ik = [0,1]. Then U(t) = Uk for all t ∈ [0,1] and so v(·)
is not proper.

We have reached a notion of rigidity for permutation group: a group Σ ⊆ Sym(V ) satisfy-
ing the equivalent conditions in Theorem 1.24 is called rigid.

As we shall discuss in Chapter 2, “sufficient symmetries” in the sense of Question 6 have
to be rigid in this sense.

Example 1.25. Σ := Sym(V ) is rigid: the onlyΣ-irreducible subspaces are span{(1, ..., 1)} and
its orthogonal complement, which are finitely many.

Similarly, it can be worked out that cyclic groups Σ := 〈(123 · · ·n)〉 are rigid, and so are
the dihedral groups with which they share the same invariant subspaces (cf. Example 1.14).

1.5 Transitive arrangements

A permutation group Σ ⊆ Sym(V ) is said to act transitively (or later, vertex-transitively) on
the underlying set V , if for any two i, j ∈ V there is a permutation σ ∈ Σ with σ(i) = j. We
call a Σ-arrangement transitive if Σ is transitive.

In later chapters we mostly work with (vertex-)transitive arrangements, realizations and
polytopes. One reason is our interest in rigidity. While rigidity does not imply transitivity, it
comes pretty close:

Lemma 1.26. If v ∈Ad(Σ) is irreducible and rigid, then it is “essentially transitive”, that is, Σ
acts transitively on V ∗ := {i ∈ V | vi 6= 0}.

The intuition behind this lemma is the following: if there is more than one non-zero orbit,
then these orbits can be “deformed” independently, giving rise to a proper deformation and
making the arrangement flexible. Irreducibility is necessary: the arrangement in Figure 1.7
(on page 44) is rigid but not “essentially transitive”.

Proof of Lemma 1.26. Consider the decomposition V = V1 ·∪ · · · ·∪ Vm of the index set into its
Σ-orbits and set Vk := {vi | i ∈ Vk}. If T denotes the representation of v, then spanVk ⊆ Rd

is T -invariant. But since v is irreducible, we must have spanVk = Rd or spanVk = {0} for all
k ∈ {1, ..., m} (recall that v ∈Ad(Σ) is full-dimensional).

Suppose then that spanVk = Rd for at least two k ∈ {1, ..., m}, say for k = 1 and k = 2,
and consider the following parametrized arrangement

vi(t) :=

¨

(1− t)vi if i ∈ V1

vi otherwise
.

We show that it is a Σ-deformation. One checks easily that v(t) is indeed a Σ-arrangement
for all t ∈ [0, 1] with the representation T . Since V2 is full-dimensional and vi(t) = vi for all
i ∈ V2, v(t) is full-dimensional for all t ∈ [0,1].

We show that v(·) is a proper deformation: any potential linear transformation mapping
v(0) onto v(1)must fix the full-dimensional set V2, but must map the other full-dimensional
set V1 to zero. This cannot be.
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We conclude that at most one (actually, exactly one) of the spanVk is full-dimensional, say
V1. In other words, for all i ∈ V we have vi 6= 0⇔ i ∈ V1. Then V ∗ = V1, and since Σ-acts
transitively on V1 we are done.

Lemma 1.26 guides us best in the study of symmetric graph realizations in Chapter 2,
when rigidity turns out to be important for pinning down “sufficient symmetry”. It then tells
us to focus on vertex-transitive realizations.

It is less applicable in the case of polytopes (see Figure 1.8), which have additional struc-
ture to keep them rigid (recall Cauchy’s rigidity theorem, cf. Theorem C.2).

Figure 1.8. The rhombic dodecahedron (center) is a polyhedron with two orbits on ver-
tices (emphasized by the point colors). Its skeleton is not “essential transi-
tive” and can therefore be properly deformed while keeping its symmetry.
The polyhedron itself however has a unique realization of this symmetry (it
is a perfect polytope, see [28]), and in fact, is spectral (cf. Example 3.12).

Lemma 1.26 does also not state that transitive arrangements are rigid. This is not even
true for polytopes (e.g. consider the truncated tetrahedron in Example 2.6).

However, transitivity allows us to give simple criteria for rigidity:

Lemma 1.27. Given a transitive group Σ ⊆ Sym(V ) and a representation T thereof. Recall the
fix space from Construction 1.15:

Fix(T,Σi) := {x ∈ Rd | Tσx = x for all σ ∈ Σi}.

If dimFix(T,Σi) = 1 for some (and then all) i ∈ V , then every irreducible v ∈ Ad(Σ) with re-
presentation T is rigid.

Proof. Let v be an irreducible Σ-arrangement with representation T . If v is flexible, then by
Theorem 1.23 there exists a non-equivalent v′ ∈ Ad(Σ) with the same representation T .
But by Construction 1.15 v and v′ are already uniquely determined by the positioning of,
say, vi resp. v′i . Recall that, also by Construction 1.15, vi , v′i ∈ Fix(T,Σi). By assumption,
dim Fix(T,Σi) = 1 and thus v′i = αvi for some α 6= 0. This extends to v′ = αv by transitivity,
in contradiction to v′ and v being non-equivalent. Thus, v must have been rigid.

The irreducibility assumption in Lemma 1.27 is not a real restriction, as one can show that
dim Fix(T,Σi)> 1 for all reducible arrangements anyway. Also, 1-dimensional arrangements
are always irreducible, and from Lemma 1.27 then follows

Corollary 1.28. All 1-dimensional transitive arrangements are rigid.
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The converse of Lemma 1.27 is not true, that is, not every transitive arrangement satisfying
dim Fix(T,Σ1) ≥ 2 is automatically flexible, not even if it is irreducible. However, examples
are surprisingly rare, and we shall call them exceptionally rigid.

Digression: exceptional rigidity

The following discussion of exceptional rigidity is not necessary for the development of the
thesis, but it shows how exceptional mathematical objects emerge when studying rigidity.

A transitive group Σ ⊆ Sym(V ) is regular, if |Σ| = |V |, or equivalently, if for any i, j ∈ V
there is exactly one σ ∈ Σwith σ(i) = j. Regular permutation groups have trivial stabilizers,
that is, Σi = {id} for all i ∈ V . For any Σ-representation T : Σ→ O(Rd) the fix space then is

Fix(T,Σi) = Rd ,

and Lemma 1.27 is no help in concluding rigidity for any Σ-arrangement. Rigidity can still
occur though.

Example 1.29. Cyclic groups Σ := 〈(123 · · ·n)〉 are regular. Consider the case n= 4 and the
2-dimensional Σ-invariant subspace from Example 1.14:

U = span{ (1, 1,−1,−1), (1,−1,−1, 1) }.

We have seen that it gives rise to aΣ-arrangement in the shape of a square. Its representation
T maps (1234) onto the 90◦-rotation clock-wise. By Construction 1.15, a Σ-arrangement
with representation T is uniquely determined by the placement of v1.

However, all these arrangements turn out to be just rotated squares and are thus equivalent.
By Theorem 1.23 flexibility is equivalent to the existence of a non-equivalent arrangement

with the same representation. As we have seen, such do not exist here, and the square is
rigid despite dim Fix(T,Σ1)≥ 2.

Equivalently, one finds that the vertices of any regular n-gon form a Σ-arrangements for
Σ= 〈(123 · · ·n)〉, which then too is exceptionally rigid.

Besides in dimension two, the only other examples of this kind appear in dimension four.

Theorem 1.30. If Σ ⊆ Sym(V ) acts regularly and v ∈ Ad(Σ) is irreducible and exceptionally
rigid, then d = 2 or d = 4.

Proof. Since v ∈Ad(Σ) is full-dimensional and irreducible, its representation T is irreducible
as well. By Construction 1.15, to every x ∈ Fix(T,Σ1) = Rd exists a unique Σ-arrangement
v(x) with representation T and v1(x) = x . Since T is irreducible, v(x) is full-dimensional,
in particular, v(x) ∈Ad(Σ).
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By assumption, v is rigid, and by Theorem 1.23 (i)⇒ (ii) every Σ-arrangement with rep-
resentation T must be equivalent to v. In particular, v(x) is equivalent to v. By Corollary 1.4
there is an X (x) ∈ GL(Rd) with v(x) = X (x)v.

Consider the set End(T ) := {X ∈ GL(Rd) | X Tσ = TσX } of all transformations that com-
mute with T , also known as the endomorphism ring of T (see Definition A.7 (ii)). We show
that x 7→ X (x) is a linear isomorphism between Rd and End(T ).

Since Σ is regular, for every i ∈ V there is a unique σ ∈ Σ with σ(1) = i. Then

X (αa+ β b)vi = vi(αa+ β b) = Tσi
v1(αa+ β b)

= Tσi
(αa+ β b)

= αTσi
a+ βTσi

b

= αTσi
v1(a) + βTσi

v1(b)

= αvi(a) + β vi(b) = αX (a)vi + βX (b)vi .

for all i ∈ V . Since the vi contain a basis, this shows X (αa+ β b) = X (αa) + X (β b).
Using the same argument, we show that X (x) commutes with Tσ:

X (x)Tσvi = X (x)vσ(i) = vσ(i)(x) = Tσvi(x) = TσX (x)vi .

for all i ∈ V . This proves X (x) ∈ End(T ).
It remains to show that there exists an inverse map. This map is End(T ) 3 X 7→ x := X v1.

We show that if x := X v1 then X (x) = X :

X (x)vi = X (x)Tσi
v1 = Tσi

X (x)v1 = Tσi
x = Tσi

X v1 = X Tσi
v1 = X vi .

for all i ∈ V .
By Schur’s Lemma (see Theorem A.8) the endomorphism ring End(T ) of an irreducible

representation is a division algebra over R, and thus isomorphic to either R, C or H (the
quaternions). On the other hand, we just established that x 7→ X (x) is a linear isomorphism
between Rd and End(T ), and thus d ∈ {1,2, 4}. But d 6= 1 as 1-dimensional arrangements
are not exceptionally rigid (just “casually” rigid, see Corollary 1.28).

A closer inspection of the representation T in the proof of Theorem 1.30 would yield more
information about the exceptionally rigid arrangements. Since this is just a digression, we
settle with a short description:

• if d = 2, then Σ is a cyclic group and the associated arrangement forms the vertices of
a regular polygon (as in Example 1.29).

• If d = 4, then Σ is isomorphic to a finite subgroup of the multiplicative group of unit
quaternions S1(H) (the binary polyhedral groups). The corresponding arrangements
are the vertices of certain highly-symmetric, but not necessarily regular, 4-polytopes.

The classification of exceptionally rigid arrangements shows many parallels to the classifi-
cation of symmetry groups of vertex-transitive polytopes (as mentioned in Section 1.3): the
only irreducible matrix groups that do not appear as such Euclidean symmetry groups are in
dimension two and four, and are related to the division algebras C and H.
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Summary

In this chapter we studied point arrangements, the simplest geometric objects for which we
can define symmetry and a notion of rigidity. We made an effort to characterize properties
of arrangements in terms of their arrangement spaces, building the “arrangement space dic-
tionary”. This will be of great value when we discuss spectral properties in the next chapter.

Let us summarize the various properties characterized by the arrangement space. Let v, v′ :
V → Rd be two arrangements with arrangement spaces U , U ′ ⊆ Rn. Then

span v is δ-dimensional ⇔ U is δ-dimensional

v = X v′ for some X ∈ GL(Rd) ⇔ U = U ′.

If v and v′ are spherical, then

v is a Σ-arrangement ⇔ U is Σ-invariant

v is an irreducible Σ-arrangement ⇔ U is Σ-irreducible.

If v and v′ are normalized, then

v = X v′ for some X ∈ O(Rd) ⇔ U = U ′

v has radius r(v) ⇔ [r(v)]2 = dim(U)/n.

We furthermore used arrangement spaces to develop a theory on how rigidity of arrange-
ments relates to the number and relative placement of irreducible subspaces. This relation
states roughly

there are flexible arrangements ⇔ there are non-orthogonal irreducible subspaces

⇔ there are infinitely many irreducible subspaces.

There are many more such connections that are not relevant to this work. For example, ar-
rangement spaces can be used to give a one-line definition of Gale duality [79, Section 6.4]:
v and v′ are Gale duals of each other if and only if their arrangement spaces are orthogo-
nal complements of each other. Any property shared between complement subspaces then
translates to a property shared between Gale duals, e.g. being a Σ-arrangement.

In general, we consider the arrangement space as a very convenient tool through which
to study point arrangements and their linear properties. And while the idea is certainly not
new, there seems to be no established name for this concept in the literature.
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Graph realizations appear most naturally as the skeleta of convex polytopes, but can be more
generally understood as embeddings of graphs into Euclidean spaces, most of which are not
in the “convex” configuration of a skeleton. It is the purpose of this chapter to see in how far
our questions about spectral polytopes can be already addressed and answered on the level
of general graph realizations.

Figure 2.1. A skeleton of a polytope (left), and a realization that is not the skeleton of
any polytope (right). We use shading to help the visual understanding. This
is not meant to indicate that realizations are “solid” in any way.

Particular focus will be on Question 6 (the realization version of Question 3), which asks
whether every “sufficiently symmetric” graph realization is spectral. The quest for this chap-
ter is then to develop an understanding of the interplay between spectrum and symmetry,
and by this, narrow down the notion of “sufficient symmetry”. We shall see that (in contrast
to the polytopes case) combined vertex- and edge-transitivity is not quite sufficient, and we
instead need so-called distance-transitivity.

A classical reference for the spectral properties of highly-symmetric graphs is Lovász [48].
Berkolaiko and Liu [3] studied related questions in the context of quantum graphs and graphs
with edge-weights. Most notably, in [21, Section 4] Du and Fan remarked a special property
of the Petersen graph, which turned out to match our notion of “sufficient symmetry”. This
result will be reproduced and generalized in our study of distance-transitivity.

For this chapter let G = (V, E) denote a finite simple graph with vertex set V = {1, ..., n}
and edge set E ⊆ {{i, j} | i, j ∈ V and i 6= j}. We write i j ∈ E instead of {i, j} ∈ E.

Definition 2.1. A d-dimensional (graph) realization of G is a map v : V → Rd .
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We visualize graph realizations as embeddings of graphs into Euclidean spaces, with ver-
tices embedded as points and edges embedded as straight line segments. These points and
lines are referred to as vertices and edges of the realization.

A graph realization can be considered as a point arrangement whose points are indexed by
the vertex set of a graph. We can then reuse the terminology of arrangements and speak of
the arrangement matrix and the arrangement space of a realization, of full-dimensional, nor-
malized, spherical, symmetric and irreducible/reducible realizations, as well asΣ-realizations.
For the latter it is now the default to assume Σ ⊆ Aut(G), where

Aut(G) := {σ ∈ Sym(V ) | i j ∈ E⇔ σ(i)σ( j) ∈ E}

is the (combinatorial) automorphism group (or symmetry group) of the graph G. Moreover

Ad(G,Σ) := {v : V → Rd | v is a full-dimensional Σ-realization of G}

is defined in accordance with Ad(Σ) from Section 1.4. This allows us to talk about deforma-
tions between Σ-realizations, as well as rigid and flexible realizations.

Chapter overview

We define spectral graph realizations in Section 2.1 and show that they are maximally sym-
metric w.r.t. the underlying graph. The definition is in terms of arrangement spaces, which
permits us to reformulate the vague notion of “sufficient symmetry” in terms of subspaces
of Rn. It will become clear from this formulation that a “sufficient symmetry” must be rigid
(in the sense of Section 1.4). We introduce balanced realizations as a precursor to spectral
realizations, and show that every irreducible rigid realization must be balanced.

From Section 2.2 on we focus on graph realizations with many symmetries, in particular,
vertex-, edge- and arc-transitive realizations. We show that many metric properties of such
realizations, if they are balanced, are already determined by the corresponding eigenvalue.
But we shall also see that vertex-, edge- and arc-transitive realizations need not be spectral,
or even balanced.

Section 2.3 introduces full local dimension, a natural geometric property which in partic-
ular is possessed by polytope skeleta. We show that arc-transitive realizations of full local
dimension have desirable properties, such as being irreducible, rigid and balanced. They still
need not be spectral. We describe a procedure for checking whether a given arc-transitive
polytope is spectral, by just comparing metric properties with eigenvalues. We prove that all
regular polytopes are θ2-spectral (extending a result of Licata and Powers [47]).

In Section 2.4 we consider a class of realizations of a particularly high degree of symmetry,
called distance-transitivity. We show that the distance-transitive realizations are “sufficiently
symmetric” in the sense of Question 6.

Some results for this symmetry class can be generalized to realizations that are not distance-
transitive. We do so in Section 2.5 via the study of cosine vectors and cosine sequences.
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2.1 Spectral and balanced realizations

The idea of assigning geometric information to a graph, constructed from spectral properties
of associated matrices, has been around for a long time. To name only a few, applications
have been found in data visualization (e.g. graph drawings [45]), semi-definite optimization
(e.g. eigenvalue optimization [10, 33]) and geometric combinatorics (e.g. for equiangular
lines [46] and balanced point arrangements [16]). Spectral ralizations are further related
to the Lovász theta function [49] and the Colin de Verdière graph invariant [71].

Recall that the spectrum1 Spec(G) = {θ1, ...,θm} of a graph G denotes the set of eigenvalues
of its adjacency matrix A∈ {0,1}n×n. It is common to label the distinct eigenvalues θ1 > θ2 >

· · ·> θm of A in decreasing order. More generally, by eigenvalues, eigenvectors, eigenspaces,
etc. of G, we refer to the respective quantities of its adjacency matrix.

Definition 2.2. A realization of a graph G is called θ -spectral (or just spectral) if its arrange-
ment space is the θ -eigenspace EigG(θ ) of G.

This definition fits well with our intention of building the “arrangement space dictionary”,
but it is not the standard definition given in the literature. Instead, the literature definition
of spectral realization often refers to the following concrete construction:

Construction 2.3. Let θ ∈ Spec(G) be an eigenvalue of G of multiplicity d.
We choose an orthonormal basis u1, ...,ud ∈ EigG(θ ) of the corresponding eigenspace and

construct the matrix

Φ :=



u1 · · · ud



 ∈ Rn×d

in which the ui are the columns. This matrix has exactly n rows, and we can define a d-di-
mensional graph realization v : V → Rd for which vi is the i-th row of Φ.
Φ is the arrangement matrix of v and U := spanΦ= EigG(θ ) is the corresponding arrange-

ment space. In particular, v is spectral in the sense of Definition 2.2. We shall call this specific
spectral realization the θ -realization of G.

Note that Φ>Φ= Id, and so v is full-dimensional and normalized. In particular, it is unique
up to orientation by Lemma 1.10 and it is justified to call it the θ -realization of G.

Example 2.4. Let G be the edge-graph of the regular dodecahedron. Its spectrum is

Spec(G) =
�

31,
p

5 3, 15, 04, (−2)4, (−
p

5)3
	

,

where the exponents denote multiplicities.
Note in particular the two eigenvalues ±

p
5 of multiplicity three. Using Construction 2.3,

those give rise to two 3-dimensional realizations.

1See Appendix B for a brief reminder on the most important aspects of spectral graph theory.
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Remarkably, the realization to the second-largest eigenvalue θ2 =
p

5 is precisely the skeleton
of the regular dodecahedron.

This is another instance of the “curious observation” from the introduction: the convex hull
of the

p
5-realization is the polyhedron from which we have started. In the language of the

upcoming Chapter 3, the regular dodecahedron is a spectral polytope.
We also mentioned that the same phenomenon can be observed for all regular polytopes

(see Appendix E for a reminder on this polytope class). This was proven by Licata and Powers
in [47] for most of them. In Example 2.29 below we describe a procedure by which to verify
the remaining cases by a simple comparison of tabulated numerical values.

To explore further examples, in Appendix F the reader can find a short Mathematica script
to compute the spectral realizations of any given graph.

Example 2.4 suggests that the spectral realizations of highly symmetric graphs, such as
the edge-graphs of regular polytopes, are themselves highly symmetric. In fact, this is well-
known: a θ -realization is always as symmetric as the underlying graph. This is essentially a
consequence of the fact that eigenspaces of G are Aut(G)-invariant:

Theorem 2.5. If v is spherical and spectral (e.g. if v is a θ -realization), then v realizes all the
symmetries of G, that is, v is an Aut(G)-realization.

Proof. Recall that the symmetries of G can be defined in terms of its adjacency matrix A: for
a permutation σ ∈ Sym(V ) and the corresponding permutation matrix Πσ ∈ Rn×n holds

σ ∈ Aut(G) ⇔ AΠσ = ΠσA. (2.1)

Suppose now that v is spherical and θ -spectral, hence has arrangement space U = EigG(θ ).
If σ ∈ Aut(G), then by (2.1) Πσ commutes with the adjacency matrix A, and Πσ therefore
preserves the eigenspaces of A. In other words, U = EigG(θ ) is Aut(G)-invariant. Since v is
spherical, Lemma 1.12 (ii) implies that it is an Aut(G)-realization.

According to Theorem 2.5, Construction 2.3 provide a fast and robust procedure to con-
struct symmetric realizations in practice. The question remains, which symmetric realizations
can be obtained by this method.

We give two examples of symmetric realizations that are unobtainable in this way.

Example 2.6. Consider the truncated tetrahedron: the polyhedron obtained from the regular
tetrahedron by cutting off its vertices. There is a freedom in this construction, from which we
obtain an infinite family of distinct realizations:
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Each realization has the full symmetry of the regular tetrahedron, and their skeleta are Aut(G)-
realizations of the edge-graph G. The spectrum of G is

Spec(G) = {31, 23, 02, (−1)3, (−2)3 },

and we see that there are only three 3-dimensional spectral realizations. But the image shows
already four of infinitely many distinct stages of an Aut(G)-deformation. Most of the skeleta
are therefore not spectral, even though they are Aut(G)-realizations.

Example 2.6 provides a first idea for why rigidity is an essential ingredient for “sufficient
symmetry”. We come back to this in Observation 2.9.

Example 2.7. Consider G = (V, E), the edge-graph of the hexagonal prism with V = {1, ..., 12},
depicted on the left, and a particular 2-dimensional realization v of G on the right (note that
several edges and vertices are mapped on top of each other):

One can check that v is an Aut(G)-realization. The spectrum of G,

Spec(G) = {31, 22, 11, 04, (−1)1, (−2)2, (−3)1 },

has two eigenspaces of dimension two. But v is a spectral realization to neither: the neigh-
bors of 1 ∈ V (highlighted in the figure) have their “barycenter” at the origin. We shall see in
a moment (in Proposition 2.11) that then v can be at most 0-spectral. But the 0-eigenspace
has dimension four, and so this can neither be the case.

Note that v is rigid, and so the problem is not the lack of rigidity for this example.

The two preceding examples point to two distinct obstacles in identifying “sufficient sym-
metries”. We shall see that both problems are best described in terms of arrangement spaces.

Via the arrangement space, spectral realizations correspond to eigenspaces, and symmetric
realizations correspond to invariant subspaces. Theorem 2.5 was then proven by using that
eigenspaces are Aut(G)-invariant, and Question 6 can be interpreted as asking for a converse:
when are Σ-invariant subspaces eigenspaces?
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We should not expect this to happen for most reducible subspaces. For example, if θ ,θ ′ ∈
Spec(G) are distinct eigenvalues, and since eigenspaces are Σ-invariant for all Σ ⊆ Aut(G),

U := EigG(θ )⊕ EigG(θ
′)

is a reducible Σ-invariant subspace that is not an eigenspace.
It is then reasonable to ask Question 6 only for irreducible realizations. Let us use this to

finally give a formal definition of what we mean by “sufficient symmetry”:

Definition 2.8. A permutation group Σ ⊆ Aut(G) is a sufficient symmetry, and irreducible
Σ-realizations are called sufficiently symmetric, if any (and then both) of the following state-
ments is satisfied:

(i) all irreducible Σ-realizations are spectral.

(ii) the Σ-irreducible subspaces of Rn are exactly the eigenspaces of G.

A realization is spectral if its arrangement space U ⊆ Rn is an eigenspace. A Σ-realization
can then fail to be spectral in essentially two ways:

• U might be a proper subspace of an eigenspace. This can happen if an eigenspace is not
Σ-irreducible.

This happened in Example 2.7: the 4-dimensional 0-eigenspace of the edge-graph has a
2-dimensional Aut(G)-irreducible subspace. The given realization has this subspace as
its arrangement space.

• U might not be contained in any eigenspace at all.

This happened in Example 2.6: the edge-graph has only three eigenspaces of dimension
three, and no larger eigenspaces. So there are only three 3-dimensional subspaces of
Rn that fit in an eigenspace. But there are more than three Aut(G)-realizations.

It is exactly the second problem that can be avoided by rigidity:

Observation 2.9. In Definition 2.8 we formalized “sufficient symmetry” as the Σ-irreducible
subspaces being exactly the eigenspaces. But there are only finitely many eigenspaces. By
Theorem 1.24 (iii)=⇒ (i) “sufficient symmetry” must then come with rigidity.

We can therefore focus on rigid permutation groups Σ ⊆ Aut(G).

Of course, rigidity cannot be a sufficient condition for “sufficient symmetry” as we are still
left with the first problem (cf. Example 2.7). We give a name to the problem:

Definition 2.10. A realization with arrangement space U ⊆ Rn is called θ -balanced (or just
balanced) if U ⊆ EigG(θ ) for some θ ∈ Spec(G).

Spectral realizations are then a special type of balanced realization. The name “balanced”
is motivated from the following geometric interpretation:

Proposition 2.11. A realization is θ -balanced if and only if
∑

j∈N(i)

v j = θ vi , for all i ∈ V , (2.2)

where N(i) := { j ∈ V | i j ∈ E} denotes the neighborhood of i ∈ V in G.
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2.1 Spectral and balanced realizations

Proposition 2.11 states that in a balanced realization every vertex is (up to some factor) in
the barycenter of its neighbors (so to say, balanced “between” its neighbors). Note that this
justifies our conclusion in Example 2.7: the realization can be at most 0-spectral because the
barycenter of the neighbors is the origin, thus θ = 0.

Proof of Proposition 2.11. Note that (2.2) is equivalent to AΦ= θΦ, where A is the adjacency
matrix of G and Φ is the arrangement matrix of v. But this is equivalent to θ ∈ Spec(G) and
the columns of Φ being θ -eigenvectors, or U := spanΦ ⊆ EigG(θ ).

It will become apparent that we consider being balanced as a worthwhile middle ground. It
is comparatively easy to conclude that realizations of a particular symmetry are balanced (as
we shall do in Theorem 2.27), and like for spectral realizations, there are strong connections
between θ and the metric properties of a θ -balanced realization (see Lemma 2.20 below). In
a sense, spectral realizations are balanced realizations of a maximal dimension, and proving
this last step of having the “right dimension” is often the hardest part when working from
just symmetry.

Theorem 2.12. If v ∈Ad(G,Σ) is irreducible and rigid, then it is balanced.

Proof. Let U ⊆ Rn be the arrangement space of v. Then U is Σ-irreducible by Lemma 1.13.
Consider the decomposition

Rn = EigG(θ1)⊕ · · · ⊕ EigG(θm)

of Rn into the pair-wise orthogonal eigenspaces of G. Since the eigenspaces span all of Rn,
U must be non-orthogonal to some eigenspace, say EigG(θ ). The orthogonal projection U ′ ⊆
EigG(θ ) of U onto this eigenspace is againΣ-irreducible and non-orthogonal to U (see Propo-
sition A.6). Since v is rigid, Theorem 1.23 ¬(i)=⇒¬(ii) yields U = U ′. Hence U ⊆ EigG(θ )
and v is θ -balanced.

The converse of Theorem 2.12 is not true: flexible realizations can be balanced. Or even
stronger, there are proper deformations v(·) for which all v(t), t ∈ [0,1] are balanced (see
Example 2.24 in the next section).

We close this section with a theorem about what eigenvalue multiplicities can tell us about
the geometry and rigidity of symmetric realizations.

Theorem 2.13. Let µ1 ≥ µ2 ≥ · · · be the multiplicities of the eigenvalues of G sorted in non-
increasing order (note that µi not necessarily belongs to θi). Let v ∈Ad(G,Σ) be irreducible:
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2 Graph Realizations

(i) if µ2 < d, then v is θ -balanced and θ ∈ Spec(G) has multiplicity µ1.

(ii) if µ2 < d and µ1 < 2d, then v is rigid.

Proof. Let U ⊆ Rn be the arrangement space of v. For each eigenvalue θ ∈ Spec(G), let Uθ
⊆ EigG(θ ) denote the orthogonal projection of U onto the θ -eigenspace of G. Since U is
Σ-irreducible by Lemma 1.13, the projections Uθ are Σ-irreducible as well (see Proposi-
tion A.6). If U is non-orthogonal to EigG(θ ), then it is non-orthogonal to Uθ too, and non-
orthogonal irreducible subspaces have the same dimension (see Lemma A.9):

dim EigG(θ )≥ dim Uθ = dim U = d.

But by µ2 < d there can be only a single eigenspace EigG(θ ) with multiplicity µ1 ≥ d, and U
must be orthogonal to all other eigenspaces. Since the eigenspaces induce a decomposition of
Rn into pair-wise orthogonal subspaces, being orthogonal to all but one eigenspaces implies
U ⊆ EigG(θ ) for the remaining eigenspace, and v must be θ -balanced. This shows (i).

To show (ii), suppose that v is flexible. By Theorem 1.23 (i)=⇒ (ii) there is an irreducible
realization v′ ∈ Ad(G,Σ) with Σ-irreducible arrangement space U ′ 6= U . By (i), v and v′

must both be θ -balanced, that is, U , U ′ ⊆ EigG(θ ). Since U and U ′ are distinct Σ-irreducible
subspaces, they have trivial intersection (see Observation A.3), and

µ1 = dim EigG(θ )≥ dim(U + U ′) = dim(U) + dim(U)− dim(U ∩ U ′)
︸ ︷︷ ︸

=0

= 2d.

Thus, if µ1 < 2d, then v must have been rigid, proving (ii).

2.2 Edge- and arc-transitive realizations

In our search for instances of “sufficient symmetry” we turn to the investigation of first con-
crete symmetry classes. Recall the definition of vertex-transitivity (cf. Section 1.5):

Definition 2.14.

(i) A groupΣ ⊆ Aut(G) is said to act vertex-transitively on G, if for any two vertices i, j ∈ V
there is a symmetry σ ∈ Σ with σ(i) = j. We also say that Σ is vertex-transitive.

(ii) G is said to be vertex-transitive if Aut(G) is vertex-transitive.

(iii) A realization of G is vertex-transitive if it is a Σ-realization for some vertex-transitive
group Σ ⊆ Aut(G).

Observation 2.9 shows that a “sufficient symmetry” must be rigid, and Lemma 1.26 shows
that an (irreducible) rigid realization is “essentially vertex-transitive”. It is therefore reason-
able for us to focus on vertex-transitive realizations.

However, we have also seen (e.g. in Examples 2.6 and 2.7) that vertex-transitivity alone is
not sufficient and should be supplemented by further symmetries. In this section we consider
edge- and arc-transitivity. Recall that an arc in a graph is an incident vertex-edge pair.

Definition 2.15. Let Σ ⊆ Aut(G) be a group of symmetries of G.
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2.2 Edge- and arc-transitive realizations

(i) Σ is said to act edge-transitively on G, if for any two edges i j, ı̂ ̂ ∈ E there is a symmetry
σ ∈ Σ with {σ(i),σ( j)}= {̂ı, ̂}.

(ii) Σ is said to act arc-transitively on G, if for any two edges i j, ı̂ ̂ ∈ E there is a symmetry
σ ∈ Σ with σ(i) = ı̂ and σ( j) = ̂.

Edge- and arc-transitive graphs and realizations are then defined parallel to Definition 2.14
(ii) and (iii).

Remark 2.16. Arc-transitive graphs are both vertex- and edge-transitive, but the converse is
not true. Graphs that are both vertex- and edge-transitive, but not arc-transitive, are called
half-transitive and are comparatively rare (the smallest such graph is known as the Holt graph
and has 27 vertices [37]).

We shall ignore this intermediate class for now, and often default to arc-transitive graphs.
The convenience of arc-transitive groups Σ ⊆ Aut(G) comes from the observation that even
when fixing a vertex i ∈ V , the groupΣ (or better, its stabilizerΣi) still acts transitively on the
neighborhood N(i).

We shall come back to half-transitivity in the case of polytopes in Section 4.5.

Remark 2.17. Combined vertex- and edge-transitivity might appear as an arbitrary choice
of symmetry. We argue that it is a natural choice if one tries to arrive at an especially strong
connection between the combinatorics of the graph and the geometry of its spectral realiza-
tions.

The reasoning is as follows: the results of spectral graph theory are quite sensitive to the
matrix chosen to represent the graph. The choice of the adjacency matrix might seem natu-
ral, but is far from the only choice. Other matrices can be associated to the graph, such as
the Laplace matrix (see Appendix B) or any other matrix M ∈ Rn×n with Mi j = 0 for i j 6∈ E
(a precursor to so-called discrete Schrödinger operators).

For highly-symmetric graphs, a reasonable choice of a matrix representation should reflect
the symmetries of the graph. That is, if G is vertex-transitive, then Mii should be independent
of i ∈ V . Likewise, if the graph is edge-transitive, then Mi j should be independent of i j ∈ E.
Taken together, for combined vertex- and edge-transitivity, there are α,β ∈ R with

M = αA+ β Id, (2.3)

where A denotes the adjacency matrix. Spectral realizations are build from the eigenspaces
of the graph, and in fact, all matrices of the form (2.3) have the same eigenspaces (i.e., the
same decomposition of Rn into subspaces, the corresponding eigenvalues will differ).

In this sense, combined vertex- and edge-transitivity is a setting in which the choice of the
adjacency matrix is canonical, and we can expect the spectral properties of the adjacency
matrix to be especially expressive.

Observation 2.18. If v is vertex-transitive, then ‖vi‖ is independent of i ∈ V . In particular,
the radius (as defined in (1.2)) satisfies r(v) = ‖vi‖. If v is normalized and full-dimensional
then (also by (1.2))

‖vi‖2 = [r(v)]2 =
d
n

. (2.4)
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Observation 2.19. If v is edge-transitive, then all edges have the same length, and their end
vertices have the same inner product. The following notions are then well-defined:

ω(v) := 〈vi , v j〉, `(v) := ‖vi − v j‖

whenever i j ∈ E. The latter is called the edge length of v.

In a vertex-transitive graphs all vertices have the same vertex-degree, which we abbreviate
by deg(G). The quantities from Observation 2.19 can then be computed explicitly:

Lemma 2.20. Let v be full-dimensional, vertex-transitive, edge-transitive, θ -balanced and nor-
malized. Let λ := deg(G)−θ be the corresponding Laplacian eigenvalue (cf. Appendix B). Then

ω(v) =
θd
2|E|

, [`(v)]2 =
λd
|E|

. (2.5)

Proof. Using the radius equation (2.4) as well as the geometric interpretation (2.2) for bal-
anced realizations, for each i j ∈ E there holds

deg(G) ·ω(v) =
∑

j∈N(i)

〈vi , v j〉=
¬

vi ,
∑

j∈N(i)

v j

¶ (2.2)
= 〈vi ,θ vi〉= θ · ‖vi‖2

(2.4)
=
θd
n

.

Expression (2.5) for ω(v) then follows from the identity deg(G) · n= 2|E|.
The expression for `(v) follows via

[`(v)]2 = ‖vi − v j‖2

= ‖vi‖2 + ‖v j‖2 − 2〈vi , v j〉

= [r(v)]2 + [r(v)]2 − 2ω(v)

= 2
�

[r(v)]2 −ω(v)
�

= 2
�d

n
−

dθ
2|E|

�

= 2d
�deg(G)

2|E|
−
θ

2|E|

�

=
2d(deg(G)− θ )

2|E|
=
λd
|E|

.

If the realization is just spherical instead of normalized, we can still compute some relative
quantities (the computations are straightforward):

Corollary 2.21. Let v be vertex-transitive, edge-transitive, θ -balanced, and spherical. Then

ω(v)
[r(v)]2

=
θ

deg(G)
,

�`(v)
r(v)

�2
=

2λ
deg(G)

= 2
�

1−
θ

deg(G)

�

. (2.6)

Note that we dropped the condition that v is full-dimensional, which was required for sub-
stituting dim U by d in (1.2) in the proof of Lemma 2.20. But (2.6) is independent of d, and
full dimension is no longer required.

The quantity ω/r2 is called cosine of v since for i j ∈ E holds

cosÝ(vi , v j) =
〈vi , v j〉
‖vi‖‖v j‖

=
ω(v)
[r(v)]2

(2.6)
=

θ

deg(G)
. (2.7)
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2.2 Edge- and arc-transitive realizations

Example 2.22. In Example 2.4 we have seen that the skeleton of the regular dodecahedron
can be obtained as the θ2-realization of its edge graph (where θ2 =

p
5). We can then use

Corollary 2.21 to compute the circumradius of the dodecahedron with edge length `= 1:

r(v)
(2.6)
=

√

√deg(G)
2λ2

=

√

√ deg(G)
2(deg(G)− θ2)

=

√

√ 3

2(3−
p

5)
≈ 1.401258.

Obtaining this value by elementary geometric techniques is rather laborious.

Example 2.23. The dihedral angle of a d-dimensional polytope P ⊂ Rd at a (d−2)-dimensio-
nal face is the angle between the two facets that meet at that face. In the 3-dimensional case,
dihedral angles are measured at edges.

For the regular icosahedron (the dual of the regular dodecahedron) this angle α is the same
for all edges, and is exactly π minus the angle between adjacent vertices in the dodecahe-
dron. By (2.7) is yields

α= π− arccos
� θ2

deg(G)

�

= π− arccos
�

p
5

3

�

= arccos
�

−
p

5
3

�

≈̂ 138.1896◦.

The computations in Example 2.22 and Example 2.23 work equivalently for all the other
regular polytopes. Note that this not yet requires that the regular polytopes are spectral, but
just that their skeleta are balanced (which we prove in the next section, see Theorem 2.27).

We close this section with an example of an arc-transitive realization that is neither spectral
nor rigid.

Example 2.24. Consider the complete bipartite graph Kn,n on 2n vertices. This graph is arc-
transitive and has spectrum

Spec(Kn,n) = {n1, 02(n−1), (−n)1 }.

One can check that the corresponding eigenspaces are irreducible w.r.t. Aut(Kn,n), and thus
all Aut(Kn,n)-realizations are spectral (by the equivalent statements in Definition 2.8). In
order to construct arc-transitive realizations that are not spectral and not rigid, we therefore
cannot use the full symmetry group, but have to use some proper subgroup Σ ⊂ Aut(Kn,n)
that is still arc-transitive, but with respect to which some eigenspace (apparently the 0-
eigenspace) becomes reducible.
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2 Graph Realizations

To obtain such a group, start with a set V := {1, ..., n} and choose a proper Σ̄-deformation
(of arrangements) v̄(·): [0,1] → Ad(Σ̄) for some transitive group Σ̄ ⊆ Sym(V ) and some
d < n− 1. The v̄(t) are then flexible, and we have d ≥ 2 by Corollary 1.28.

Consider Kn,n with vertex set V1 ·∪ V2, where the partition classes Vi are disjoint copies of
V . Let Σi ⊆ Aut(Kn,n) be a copy of Σ̄ acting on Vi instead of V . Let further τ ∈ Aut(Kn,n) be
the involution that exchanges V1, V2 ⊆ V (Kn,n) in the obvious way. One can check that the
group Σ := 〈Σ1,Σ2,τ〉 ⊆ Aut(Kn,n) acts arc-transitively on Kn,n.

It remains to show that the 0-eigenspace isΣ-reducible. We do so by constructing a flexible
Σ-realization of Kn,n: consider the following Σ-deformation v(·): [0,1]→A2d(Kn,n,Σ):

vi(t) :=

¨

(v̄i(t), 0) if i ∈ V1

(0, v̄i(t)) if i ∈ V2
.

Indeed, each v(t) is an irreducible Σ-realization. Since v̄(·) is proper, so is v(·), and all v(t)
are flexible. Also, the v(t) are of dimension 2d ≥ 4. Since only the 0-eigenspace of Kn,n has a
dimension of at least four, it follows from Theorem 2.13 (i) that the v(t)must be 0-balanced.
Since d < n− 1, the v(t) are of dimension 2d < 2n− 2 and none of them can be 0-spectral.

Note the following features of Example 2.24:

• The constructed realizations v(t) are flexible, but thy are also all balanced to the same
eigenvalue (i.e., the converse of Theorem 2.12 is false).

It is unclear whether irreducible arc-transitive realizations are always balanced.

• The Σ-realization in Example 2.24 uses a proper subgroup Σ ⊂ Aut(G).

It is unclear whether an arc-transitive Aut(G)-realization must be rigid. We know that
they are not always spectral (see Example 2.30 below).

Similar questions can be asked for graphs and groups of combined vertex- and edge-transitivity
or half-transitivity.

2.3 Full local dimension

In this section we consider an additional geometric constraint which is naturally satisfied by
the skeleta of (full-dimensional) polytopes.

Definition 2.25. A realization v is of full local dimension if

span{v j − vi | j ∈ N(i)}= Rd , for all i ∈ V .

That is, the edge-directions at every vertex contain a basis of Rd .

Full local dimension implies full dimension. The converse is not true, not even for irredu-
cible arc-transitive realizations:
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2.3 Full local dimension

Example 2.26. As seen in Example 2.4, the edge-graph of the dodecahedron has eigenspaces
of dimension four and five. We shall see in Section 2.4 that these eigenspaces are irreducible
w.r.t. the symmetry group of the edge-graph.

Those eigenspaces give rise to 4- and 5-dimensional irreducible arc-transitive realizations
of full dimension (via Construction 2.3). However, since the edge-graph has degree three,
those realizations cannot be of full local dimension.

General realizations of full local dimension are not necessarily rigid, balanced or irreducible
(see Examples 2.6 and 2.7). This changes when we require arc-transitivity:

Theorem 2.27. Let v ∈Ad(G,Σ) be arc-transitive and of full local dimension. Then

(i) v is Σ-rigid.

(ii) v is irreducible.

(iii) v is balanced.

Proof. Let T : Σ→ O(Rd) denote the representation of v. Let further Σi ⊆ Σ be the stabilizer
of Σ at i ∈ V , and consider the restriction T i : Σi → O(Rd) of T onto Σi . Clearly, span{vi}
is T i-invariant and is acted on by identity. That is, span{vi} ⊆ Fix(T,Σi) (where Fix(T,Σi) is
the fix space as defined in Construction 1.15). We prove span{vi}= Fix(T,Σi).

By arc-transitivity, T i acts transitively on the set Ni := {v j | j ∈ N(i)}. That is, for any two
w1, w2 ∈Ni there exists a σ ∈ Σi with Tσw1 = w2. For any x ∈ Fix(T,Σi) (and using that Tσ
is orthogonal) we then find

〈x , w1〉= 〈Tσx , Tσw1〉= 〈x , w2〉 =⇒ 〈x , w1 −w2〉= 0.

This is independent of x ∈ Fix(T,Σi) and the pair w1, w2 ∈Ni , and so Fix(T,Σi) ⊆ span{w1−
w2 | w1, w2 ∈Ni}⊥ = aff(Ni)⊥. We therefore established

span{vi} ⊆ Fix(T,Σi) ⊆ aff(Ni)
⊥. (2.8)

From full local dimension follows dimaff(Ni) ≥ d − 1 =⇒ dim aff(Ni)⊥ ≤ 1. By full dimen-
sion and vertex-transitivity, we further have dimspan{vi} = 1. The dimensions of the spaces
in (2.8) must then agree, and moreover span{vi} = Fix(T,Σi) = aff(Ni)⊥. In particular, we
have dim Fix(T,Σi) = 1 for all i ∈ V , and v is rigid by Lemma 1.27. This proves (i).

We further show that all T i-irreducible subspaces, besides span{vi}, are contained in the
orthogonal complement v⊥i : suppose that W ⊆ Rd is T i-irreducible and not contained in the
orthogonal v⊥i . In other words, W is non-orthogonal to span{vi}. If two T i-irreducible sub-
spaces are non-orthogonal, then T i acts isomorphically on them (see Lemma A.9). Since T i

acts trivially on span{vi}, it must then also act trivially on W , which means W ⊆ Fix(T,Σi) =
span{vi}.

We can now show that v is irreducible: let W ⊆ Rd be T -invariant. Then W is also invariant
w.r.t. T i for all i ∈ V . By what we have shown before, for each i ∈ V either span{vi} ⊆ W ,
or W ⊆ v⊥i . Because of vertex-transitivity, if span{vi} ⊆W for some i ∈ V , then for all i ∈ V .
Since v is full-dimensional, this implies W = Rd . Likewise, if W ⊆ v⊥i for some i ∈ V , then
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for all i ∈ V . Since v is full-dimensional, this implies W = {0}. Thus, W is a trivial invariant
subspace, and v is irreducible. This proves (ii).

Since v is rigid and irreducible, it follows that v is balanced by Theorem 2.12, which proves
(iii).

Corollary 2.28. A reducible arc-transitive realization is not of full local dimension.

Theorem 2.27 applies to arc-transitive polytopes (that is, polytopes with an arc-transitive
skeleton, e.g. regular polytopes): their skeleta are rigid, irreducible and balanced.

We give a more general argument in Chapter 3, but already now we can use Theorem 2.27
to show that (the skeleta of) regular polytopes are not only balanced, but even spectral. This
complements the findings of Licata and Powers [47], who have shown this, on a case-by-case
basis, for all regular polytopes excluding the 4-dimensional exceptions (the 24-cell, 120-cell
and 600-cell).

Example 2.29. Let P be an arc-transitive polytope. By Theorem 2.27 its skeleton is balanced
and irreducible, and thus also spherical (by Lemma 1.13). We can then apply Corollary 2.21.
It remains a matter of checking tabulated values for circumradius and edge-length, as well
as the eigenvalues of the edge-graph, to decide whether the skeleton of P is spectral (the
radii and edge-lengths of regular polytopes can be derived from the vertex coordinates given
in [18, Section 8.7]. The spectra of the egde-graphs have been computed in [12]).

We demonstrate this on one of the 4-dimensional exceptions not dealt with by Licata and
Powers. Let v be the skeleton of the 24-cell, and let G be its edge-graph. The coordinates of
the vertices of the 24-cell are all coordinate permutations and sign selections of the following
vector (see [18, Section 8.7]):

(±1,±1,0, 0) ∈ R4. (2.9)

We find the ratio `(v)/r(v) = 1. Since v is arc-transitive and balanced, the formula for rela-
tive edge-length in (2.6) can be rearranged for θ and yields

θ = deg(G)
�

1−
1
2
·
�`(v)

r(v)

�2�
= 8 ·

�

1−
1
2

�

= 4. (2.10)

Indeed, the spectrum of G is {81, 44, 06, (−4)4, (−8)1} with eigenvalue θ2 = 4 of multiplicity
four [12]. This matches the dimension of P, and we find that (the skeleton of) the 24-cell is
indeed θ2-spectral.

The reader can use Table 2.1 and (2.6) to convince himself that all regular polytopes are
θ2-spectral. In each case dim EigG(θ2) matches d.

Even though we can verify it on a case-by-case basis, we still seem to miss a fundamental
reason for why these skeleta are spectral (or stronger, θ2-spectral). One such reason for most
regular polytopes will be given already in the next section, still not using any polytope struc-
ture (see Example 2.36). This approach still fails for the 4-dimensional exceptions, though
the reasons are unrelated to the ones of Licata and Powers.

We close this section by constructing an irreducible arc-transitive realization of full local
dimension that is not spectral, showing that Theorem 2.27 cannot be improved in general.
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2.4 Distance-transitive realizations

polytope d deg(G) `(v) r(v) θ2

n-gon 2 2 2sin(2π/n) 1 2cos2(2π/n)
d-simplex d d

p

2(d + 1)
p

d −1
d-cube d d 2

p
d d − 2

d-crosspolytope d 2(d − 1)
p

2 1 d − 1
dodecahedron 3 3 4 3+ 3

p
5

p
5

icosahedron 3 5 4 10+ 2
p

5
p

5
24-cell 4 8 1 1 4
120-cell 4 4 3−

p
5

p
8 (1+ 3

p
5)/2

600-cell 4 12 2 1+
p

5 3+ 3
p

5

Table 2.1. Metric and spectral data for the edge-graphs of the regular polytopes.

Example 2.30. Consider the graph G := C6×C6. This graph can be found as the edge-graph
of the 4-dimensional (6,6)-duoprism, or alternatively, as the edge-graph of the (non-convex)
hexagonal torus:

The graph is arc-transitive with spectrum

Spec(G) = {41, 34, 24, 14, 010, (−1)4, (−2)4, (−3)4, (−4)1}.

Note in particular the eigenvalue zero of multiplicity ten. Let V = V (C6)× V (C6) = {(i, j) |
i, j ∈ V (C6)} be the vertex set of G. Then

v(i, j) :=

�

(−1)i

(−1) j

�

∈ R2

defines a 2-dimensional irreducible and 0-balanced Aut(G)-realization. This realization is of
full local dimension, but is not spectral, since its dimension is smaller than dim EigG(0) = 10.

2.4 Distance-transitive realizations

After various failures in pinning down “sufficient symmetry”, we turn to a particularly strong
symmetry, called distance-transitivity.

Distance-transitive graphs, and their generalizations, the distance-regular graphs, form a
class of graphs especially accessible by the methods of spectral graph theory. The standard
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source is the monograph by Brouwer, Cohen and Neumaier [11]. The generic distance-
regular graph has a trivial automorphism group, which makes it less relevant to this discus-
sion, and we focus on distance-transitive graphs only.

Let dist(i, j) denote the (graph theoretical) distance between any two vertices i, j ∈ V , i.e.,
the length of a shortest path between i and j. The diameter of a connected graph is

diam(G) :=max
i, j∈V

dist(i, j),

the maximal distance between any two of its vertices. In particular, we shall assume that all
graphs in this section are connected.

Definition 2.31. A group Σ ⊆ Aut(G) acts distance-transitively on G if it acts transitively on
each of the sets

Dδ := {(i, j) ∈ V × V | dist(i, j) = δ}, for each δ ∈ {0, ..., diam(G)}.

Distance-transitive graphs and realizations are defined parallel to Definition 2.14. Note
that being arc-transitive is equivalent to being transitive on the set D1. In particular, distance-
transitive graphs are arc-transitive.

Example 2.32. Complete graphs and cycle graphs are distance-transitive. More generally,
the edge-graphs of the regular polytopes are distance-transitive, with the usual 4-dimensional
exceptions (the 24-cell, 120-cell and 600-cell). Even stronger, the skeleton of any of these
regular polytopes is a distance-transitive realization of the edge-graph (this can be checked
by hand, but will also follows from our results in Chapter 3).

Other examples of distance-transitive graphs that are not necessarily edge-graphs are the
Petersen graph (see Figure 2.2) and all complete r-partite graphs Kk,...,k. Further examples
are listed in Theorem 3.3 in the next chapter.

Figure 2.2. The Petersen graph.

For us, the most relevant observation concerning distance-transitive symmetry was already
made in [11]:

Theorem 2.33 ( [11], Proposition 4.1.11). If Σ ⊆ Aut(G) is distance-transitive, then the Σ-
irreducible subspaces of Rn are exactly the eigenspaces of G.

We shall give a partial proof for Theorem 2.33 in Section 2.5, that is, we show that the eigen-
spaces are indeed irreducible (see Lemma 2.40).
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As we mentioned in the introduction of this chapter, the observation of Theorem 2.33 was
made by Du and Fan in [21, Section 4] specifically for the Petersen graph. This observation
now also follows from the fact that the Petersen graph is distance-transitive.

Theorem 2.33 in the form of realizations reads as follows (cf. Definition 2.8):

Theorem 2.34. The irreducible distance-transitive realizations of G are spectral.

In other words, distance-transitivity is a “sufficient symmetry” in the sense of Question 6.
One can wonder whether there is any weaker (and still easily definable) form of symmetry
with the same property. We do not have an answer to this.

Corollary 2.35. Let v ∈Ad(G,Σ) be a (not necessarily irreducible) distance-transitive realiza-
tion. Then there holds:

(i) v is rigid.

(ii) v is an Aut(G)-realization (i.e., Σ cannot be geometrically separated from Aut(G) ).

(iii) the following are equivalent: v being balanced, spectral and irreducible.

Proof. The graph G has only finitely many eigenspaces. By Theorem 2.33 there are only fini-
tely many Σ-irreducible subspaces. All Σ-realizations are then rigid by Theorem 1.24. This
proves (i).

By Theorem 2.33 theΣ-irreducible subspaces are eigenspaces of G, which are Aut(G)-inva-
riant. It follows that all Σ-invariant subspaces are Aut(G)-invariant. By Theorem 1.19 all
Σ-realizations are then Aut(G)-realizations. This proves (ii).

Finally, let U ⊆ Rn be the arrangement space of v. If v is irreducible, then v is spectral
by Theorem 2.34. If v is spectral, then it is balanced by definition. If v is θ -balanced, then
U ⊆ EigG(θ ). But since EigG(θ ) is Σ-irreducible (by Theorem 2.33), and U is Σ-invariant
(by Lemma 1.12), U = EigG(θ ) and v is spectral and irreducible. This proves (iii).

Example 2.36. Let P be a polytope with a distance-transitive skeleton (e.g. a regular poly-
tope other than a 4-dimensional exception, cf. Example 2.32). By Theorem 2.27 the skeleton
of P is irreducible, and by Theorem 2.34 it is then spectral.

This gives a very short proof for the results Licata and Powers [47], except that it does not
yet show that these skeleta are spectral to θ2.

In Chapter 4 we give a complete classification of “distance-transitive polytopes” (see The-
orem 4.18).

2.5 Cosine vectors and cosine sequences

In this final section of the chapter we discuss an idea for extending results like Theorem 2.34
beyond distance-transitivity. We also give a partial proof of Theorem 2.34.

Definition 2.37. For a vertex-transitive realization v and some vertex i ∈ V , the cosine vector
u ∈ Rn of v is the vector with components u j := 〈vi , v j〉 for all j ∈ V .
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Vertex-transitivity ensures that the cosine vector is independent of the choice of i ∈ V (up
to some coordinate permutation). We can therefore assume that ui := 〈v1, vi〉. Also, we can
write u= Φv1 and see that the cosine vector u ∈ spanΦ=: U is contained in the arrangement
space of v.

Our goal is to develop a technique to show that a particular given θ -balanced realization
is actually θ -spectral. This is trivial if we know the multiplicity of θ ∈ Spec(G), but harder
if we have only access to geometric data. Consider the following idea:

Observation 2.38. Let v be a θ -balanced Σ-realization with arrangement space U ⊆ Rn. In
particular, U is Σ-invariant (by Lemma 1.12) and U ⊆ EigG(θ ).

If U is a proper subspace of EigG(θ ), then the subspace U ′ := U⊥ ∩ EigG(θ ) ⊆ EigG(θ ) is
non-zero and Σ-invariant. We can choose a θ -balanced Σ-realization v′ with arrangement
space U ′ (via Construction 1.2). If u, u′ ∈ Rn are the cosine vectors of v and v′ respectively,
then 〈u, u′〉= 0 because they are contained in the orthogonal subspaces U and U ′.

The idea is to show that, in the right setting, being balanced Σ-realizations to the same
eigenvalue is already so restrictive, that the corresponding cosine vectors have no chance to
be orthogonal. If this is the case, then we reached a contradiction and found that EigG(θ )
must have been Σ-irreducible and v therefore θ -spectral.

This applies most directly in the case of distance-transitivity: one can show that the cosine
vectors of distance-transitive realizations depend only on G and θ , and thus two distance-
transitive θ -balanced realizations of G cannot have orthogonal cosine vectors.

This is well-known, but we included a proof below (see Lemma 2.40).

Observation 2.39. If v is distance-transitive, then the value of ui = 〈v1, vi〉 depends only on
δ := dist(1, i). One therefore groups all entries with the same distance to 1 ∈ V into a single
entry uδ, for all δ ∈ {0, ..., diam(G)}. The sequence u0, ..., udiam(G) is called cosine sequence
of v and is a well-established terminology in the theory of distance-regular graphs.

Clearly the cosine sequence and cosine vector of a distance-transitive realization determine
each other. We show the following:

Lemma 2.40. The cosine sequence of a θ -balanced distance-transitive realization of radius
r(v) = 1 only depends on G and the eigenvalue θ .

Proof. Let Nδ(i) := { j ∈ V | dist(i, j) = δ} denote the set of vertices at distance δ from i. In
a distance-transitive graph, the cardinality of the intersection Nδ1

(i)∩ Nδ2
( j) only depends

on δ1,δ2 and dist(i, j). The following parameters are therefore independent of the exact
choice of i, j ∈ V , but only depend on δ := dist(i, j):

cδ := |Nδ−1(i)∩ N1( j)
︸ ︷︷ ︸

=:Nc

|, aδ := |Nδ(i)∩ N1( j)
︸ ︷︷ ︸

=:Na

|, bδ := |Nδ+1(i)∩ N1( j)
︸ ︷︷ ︸

=:Nb

|,

where Na, Nb and Nc depend implicitly on δ, i and j. The order of the parameter names a, b
and c might appear counter-intuitive, but is standard in the literature. In the literature, the
list of parameters aδ, bδ and cδ is called the intersection array of G. Note also that N( j) =
Na ·∪ Nb ·∪ Nc .
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2.5 Cosine vectors and cosine sequences

Suppose now that v is a θ -balanced distance-transitive realization with cosine sequence
uδ. For all δ ∈ {0, ..., diam(G)} there is an j ∈ Nδ(1), and thus

θuδ = 〈v1,θ v j〉
(2.2)
=
¬

v1,
∑

i∈N( j)

vi

¶

=
∑

i∈Nc

uδ−1
︷ ︸︸ ︷

〈v1, vi〉+
∑

i∈Na

uδ
︷ ︸︸ ︷

〈v1, vi〉+
∑

i∈Nb

uδ+1
︷ ︸︸ ︷

〈v1, vi〉

= cδuδ−1 + aδuδ + bδuδ+1.

Rearranging for uδ+1 yields a three-term recurrence for the components of the cosine se-
quence that only involves θ and the intersection array:

uδ+1 =
1
bδ

�

(θ − aδ)uδ − cδuδ−1

�

. (2.11)

We assumed r(v) = 1. Since v is arc-transitive, we obtain initial conditions

u0 = [r(v)]
2 = 1, u1 =ω(v)

(2.6)
=

θ

deg(G)
.

These initial conditions only depend on θ and G (its degree, and intersection array), and so
by (2.11) the whole cosine sequence only depends on θ and G.

Lemma 2.40 together with Observation 2.38 shows that the eigenspaces of a graph are
Σ-irreducible for all distance-transitive Σ ⊆ Aut(G) (this is also part of Theorem 2.33).

We do not yet have a systematic way to extend this reasoning to a large class of graphs that
are not distance-transitive. However, the following example describes a general procedure
that can be applied on a case-by-case basis.

Example 2.41. We show that the skeleton of the 24-cell is a spectral realization without
using knowledge of its spectrum (showing that was easy when knowing the eigenvalue mul-
tiplicities, cf. Example 2.29). The (skeleton of the) 24-cell is arc-transitive (but not distance-
transitive) and therefore balanced by Theorem 2.27.

From the vertex coordinates given in (2.9), we can derive the cosine vector

u= (21, 18, 06, (−1)8, (−2)1)

(we ignore the exact ordering of the entries of the vector and only list the multiplicities).
The single entry of value 2 in u belongs to the radius r(v) =

p
2 of this realization. Also,

the eight entries with value 〈v1, vi〉 = 1 belong to the neighbors i ∈ N(1), and so this value
is determined by (2.6). In conclusion, any other balanced arc-transitive realization v′ to the
same eigenvalue and of the same radius must have a cosine vector of the form

u′ = (21, 18; x1, ..., x6; y1, ..., y8; z),

where the x i match up with the 0-entries in u, the yi match up with the −1-entries in u, and
z matches with the −2-entry.
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As discussed in Observation 2.38, we can assume 〈u, u′〉= 0, which expands to

0= 〈u, u′〉= 4+ 8− y1 − · · · − y8 − 2z. (2.12)

We may further assume that v′ is centered at the origin, that is, v′1+ · · ·+ v′n = 0 (otherwise,
translate it; this does not affect any relevant properties). Applying 〈v′1, ·〉 we get

0=
∑

i∈V

〈v′1, v′i 〉=
∑

i∈V

u′i = 2+ 8+ x1 + · · ·+ x6 + y1 + · · ·+ y8 + z (2.13)

The sum of (2.12) and (2.13) yields z = 22+ x1 + · · ·+ x6.
Note that each component of u′ satisfies u′i = 〈v

′
1, v′i 〉= [r(v)]

2 cosÝ(v′1, v′i ) ∈ [−2,2]. But
this is incompatible with z = 22+ x1+ · · ·+ x6. We then found that no second arc-transitive
θ -balanced realization besides v can exist, and that the skeleton of the 24-cell is spectral by
Observation 2.38.

Example 2.41 makes clever use of the shape of the cosine vector of the 24-cell. The same ar-
gument works essentially unchanged for skeleta with a similar distribution of entries in the
cosine vector. For example, the skeleton of the cuboctahedron (also arc-transitive) has cosine
vector

u= (21, 14, 02, (−1)4, (−2)1).

We do not yet know whether this idea can be applied systematically to a wide variety of co-
sine vectors.

Summary

In this chapter we asked whether symmetry can be sufficient to ensure that a graph realiza-
tion is spectral. Using the arrangement space dictionary, the question has been reformulated
in terms of subspaces, and we found us asking about the relation between eigenspaces of G
and invariant/irreducible subspaces of Σ ⊆ Aut(G).

We have seen that this connection between symmetry and spectrum is still quite weak for
vertex-, edge- and arc-transitive realizations. But we also identified distance-transitivity as
a “sufficient symmetry” in the sense of Question 6.

Returning to our initial motivation, how far have these investigations brought us in better
understanding spectral polytopes (i.e., polytopes with spectral skeleta)?

• Theorem 2.5 applies directly to spectral polytopes and shows that they are as symmet-
ric as their edge-graphs.
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• With Theorem 2.27 we conclude that the skeleta of arc-transitive polytopes are always
rigid, irreducible and balanced (to some eigenvalue θ). It follow from Lemma 2.20 that
many metric properties of these polytopes can then be computed from θ .

• In Example 2.29 we gave a procedure to decide whether a given arc-transitive polytope
is spectral by just assuming knowledge of its edge-length, its circumradius, and the
spectrum of its edge-graph. This was sufficient to reproduce and generalize the results
of Licata and Powers [47], that all the regular polytopes are θ2-spectral, including the
4-dimensional exceptions.

• As a consequence of Theorem 2.34, “distance-transitive polytopes” (polytopes with a
distance-transitive skeleton, see Section 4.6) are spectral.

But we have also learned that for a complete understanding of spectral polytopes using the
polytope structure is inevitable:

• All polytopes that we have identified as spectral turned out to be θ2-spectral. However,
the meaning of θ2 as the relevant eigenvalue for polytopes is still mysterious. At least
for “distance-transitive polytopes” there are some not too deep arguments to show that
they must be θ2-spectral (using arguments about the sign changes in eigenvectors), but
in view of the more general theory of Chapter 3, this proof is omitted.

• We cannot yet conclude that a sufficiently symmetric polytope is uniquely determined
by its edge-graph. It is conceivable that there are distinct eigenvalues θ ,θ ′ ∈ Spec(G)
so that both, the θ -realization and the θ ′-realization, are the skeleta of polytopes. These
polytopes would have the same edge-graph and would both be spectral.

In the positive, the results of this chapter have a larger applicability, being valid for all realiza-
tions and not just polytope skeleta. We have seen that arc-transitivity combined with full local
dimension comes with nice properties, and we have seen that distance-transitive symmetries
cannot be geometrically separated from Aut(G).

We are also left with several open questions about graph realizations:

Question 2.42. Are irreducible arc-transitive realizations always balanced?
Equivalently, ifΣ ⊆ Aut(G) is arc-transitive, are then allΣ-irreducible subspaces contained

in eigenspaces?

Question 2.43. Are arc-transitive Aut(G)-realizations rigid?
Equivalently, if G is arc-transitive, are there only finitely many Aut(G)-invariant subspaces?

Questions 2.42 and 2.43 can also be asked for combined vertex- and edge-transitivity or
half-transitivity. Likewise, we wonder whether Theorem 2.27 can be proven for these other
symmetry classes too.
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Spectral Polytopes

Our impression so far is that the structure of graph realizations is insufficient for acquiring a
deeper understanding of how symmetry and spectral properties of polytopes are related. In
this chapter we apply results from convex geometry that make explicit use of the polytope
structure and we derive geometric criteria for spectral polytopes. In particular, we shall see
that polytopes of combined vertex- and edge-transitivity are θ2-spectral.

For this chapter let P ⊂ Rd denote a convex polytope, i.e., the convex hull of finitely many
points (see also Appendix C for a reminder on the basic terminology for polytopes). We shall
assume that P is of full dimension. By Fδ(P) we denote the set of δ-dimensional faces of P.

We fix an enumeration v1, ..., vn ∈ F0(P) of the vertices of P. Let GP = (V, E) denote its
edge-graph on the vertex set V = {1, ..., n}, so that i ∈ V corresponds to vertex vi ∈ F0(P).
The skeleton of P is the map

skP : V → Rd , i 7→ vi ,

which is a graph realization of the edge-graph. This definition of skeleton enables us to reuse
the terminology of graph realizations. For example, a spectral polytope can now be simply de-
fined as a polytope with a spectral skeleton.

A symmetry of a d-dimensional polytope is an isometry of Rd that fixes P set-wise. For
convenience we shall assume that P is centered at the origin, so that the symmetries are
orthogonal transformations. The (Euclidean) symmetry group of P is then

Aut(P) := {T ∈ O(Rd) | T P = P} ⊆ O(Rd).

If Aut(P) acts transitively on the vertices of P, edges of P, etc., then P is said to be vertex-
transitive, edge-transitive, etc. This is compatible with the terminology inherited from graph
realizations: e.g. P is vertex-transitive (in this new sense) if and only if its skeleton is vertex-
transitive in the sense of Definition 2.14.

Chapter overview

Our definition of “spectral polytope” deviates from the literature definition, which is based
on eigenpolytopes. For this reason we start in Section 3.1 with a formal introduction of eigen-
polytopes supplemented with an extensive literature overview also addressing previous work
on spectral polytopes.
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From Section 3.2 on we focus on spectral polytopes. We show that our definition of spectral
polytope (via the skeleton) is aligned with the literature definition based on eigenpolytopes.
We give an overview of examples and non-examples and describe the general properties of
spectral polytopes.

In Section 3.3 we present the Theorem of Izmestiev, our as of yet most powerful tool for the
identification of θ2-spectral polytopes. We derive geometric criteria for θ2-spectral polytopes
and show that polytopes of combined vertex- and edge-transitivity are of this form.

3.1 Eigenpolytopes

The historical origin of spectral polytopes is in the study of eigenpolytopes. In this section we
briefly introduce eigenpolytopes and review their literature.

Eigenpolytopes were first introduced by Godsil in 1978 [31]. They are obtained as convex
hulls of spectral graph realizations.

Definition 3.1. For a graph G and an eigenvalue θ ∈ Spec(G), the θ -eigenpolytope is

PG(θ ) := conv{vi | i ∈ V},

where vi is the θ -realization of G (see Construction 2.3).
For later use, the θ -realization used in the above definition will be denoted eigθG .

Example 3.2. In the introduction we computed the θ2-eigenpolytope of the edge-graph of
the cube. The spectrum of this edge-graph G is

Spec(G) = {31, 13, (−1)3, (−3)1 }.

The corresponding eigenpolytopes are depicted below:

Only for θ2 we obtain the cube as eigenpolytope. The θ1-eigenpolytope of a connected regu-
lar graph is always a single point. Likewise, whenever a regular graph is bipartite, the eigen-
polytope to the smallest eigenvalue is 1-dimensional and thus a line segment.

To compute further examples, the reader can find a Mathematica script for that purpose
in Appendix F.

Literature overview

Godsil introduced eigenpolytopes to study symmetry groups of graphs. In [31] he proved
the existence of a group homomorphism Aut(G)→ Aut(PG(θ )). The existence of this homo-
morphism also follows from the symmetry properties of θ -realizations (see Theorem 2.5).
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In general, this is not an isomorphism, that is, Aut(G) 6∼= Aut(PG(θ )) (consider the eigen-
polytopes in Example 3.2).

The combinatorial structure of an eigenpolytope encodes properties of the original graph.
For example, Rooney [64] used the size of the facets of the PG(θ ) to deduce statements about
the size of cocliques in G.

Padrol and Pfeifle [59] investigate how common graph operations translate to operations
on their (Laplacian) eigenpolytopes.

Several authors became interested in constructing and investigating eigenpolytopes of par-
ticular graphs and graph families. Powers [62] studied the eigenpolytopes of the Petersen
graph, which he termed the Petersen polytopes (one of which appears as a distance-transitive
polytope in Section 4.6). In [57] Mohri described the face structure of the Hamming poly-
topes, the θ2-eigenpolytopes of the Hamming graphs. These polytopes turned out to be the
cartesian powers of regular simplices and will also reappear as distance-transitive polytopes
in Section 4.6.

The author of [8] provides a careful enumeration of the eigenpolytopes (actually, spectral
graph realizations) of the edge-graphs of uniform polyhedra (see Appendix E). Unfortunately,
this write-up has never been published formally. The listing provides empirical evidence that
every (irreducible) uniform polyhedron (including the Platonic and Archimedean solids) has
a realization as an eigenpolytope of its edge-graph (see also Example 3.11).

Particular attention was given to the eigenpolytopes of distance-regular graphs [29,32,63].
For example, in [32] Godsil shows that if G is a distance-regular graph, then every edge of
G is mapped into an edge of PG(θ2) (via the θ2-realization of G). In other words, G appears
as a spanning subgraph of the edge-graph of PG(θ2). The same is not necessarily true for
eigenvalues other than θ2, and it is an open question how much structure is necessary to
obtain the same result for more general graph classes.

In the extreme case of this “spanning subgraph” phenomenon, G becomes isomorphic to
the edge-graph of the eigenpolytope (which led to the literature definition of what we call
a spectral polytope). This observation has been made repeatedly: we previously mentioned
Licata and Powers [47], who conjectured that all regular polytopes are θ2-eigenpolytopes
of their edge-graph. They proved their conjecture in all cases excluding the 4-dimensional
exceptions. We have shown in Example 2.29 that their result extends to all regular polytopes.

A major result for spectral polytopes was obtained by Godsil in [32], where he obtained a
complete classification in the case of distance-regular graphs.

Theorem 3.3 ([32], Theorem 4.3). Let G be distance-regular. If G is isomorphic to the edge-
graph of its θ2-eigenpolytope, then G is one of the following:

(i ) a cycle graph Cn, n≥ 3,

(ii ) the edge-graph of the dodecahedron,

(iii ) the edge-graph of the icosahedron,

(iv ) the complement of a disjoint union of edges (also known as a crown graph),

(v ) a Johnson graph J(n, k),

(vi ) a Hamming graph H(d, q),
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(vii ) a halved d-cube 1/2Qd ,

(viii ) the Schläfli graph, or

(ix ) the Gosset graph.

Figure 3.1. The Schläfli graph (left) and the Gosset graph (right).

A second look at this list reveals a remarkable “coincidence”: while the generic distance-
regular graph has few or no symmetries, all graphs in this list are highly symmetric, in fact,
distance-transitive (cf. Section 2.4). It is this enumeration in Theorem 3.3 that enables us to
give a complete classification of “distance-transitive polytopes” in Section 4.6.

3.2 Spectral polytopes

The literature defines spectral polytope as a “polytope that is the eigenpolytope of its edge-
graph”1. Particular focus was thereby on the case θ2.

We point to some subtleties when extending this definition to arbitrary eigenvalues.

Example 3.4. Consider the regular pentagon. Its edge-graph, the 5-cycle, has the following
two spectral realizations:

The left realization is constructed from the second-largest eigenvalue θ2 and looks expectedly
like the skeleton of a regular pentagon. In contrast, the θ3-realization resembles a pentagram.

1Note that the term “spectral polytope” was just introduced in this thesis and that it is our interpretation which
previous literature aims to address this phenomenon.
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In either case, the corresponding eigenpolytope (the convex hull of the graph realization)
is a regular pentagon. Should we therefore consider the pentagon as both θ2-spectral and
θ3-spectral? We argue that this is undesirable, because the θ3-realization of the 5-cycle is
not an embedding into the skeleton of the respective eigenpolytope.

This problem is not unique to dimension two (cf. Example 2.4):

For both eigenvalues, the eigenpolytope is the regular dodecahedron.

Our preferred definition of “spectral polytope” is derived from spectral graph realizations:

Definition 3.5. A polytope is called θ -spectral (or just spectral) if its skeleton is θ -spectral.

The connection of Definition 3.5 with the literature definition is captured in the following
technical proposition:

Proposition 3.6. P is θ -spectral if and only if there is a linear transformation X ∈ GL(Rd) so
that PGP

(θ ) = X P and for which the following diagram commutes:

P PGP
(θ )

GP

X

skP
eigθGP

(3.1)

Recall that GP is the edge-graph of P, skP its skeleton and eigθGP
denotes the θ -realization

of GP as used in defining eigenpolytopes (see Definition 3.1).

Corollary 3.7. If P is θ -spectral then it is the θ -eigenpolytope of its edge-graph (up to invertible
linear transformation).

Proof of Proposition 3.6. If (3.1) commutes for X ∈ GL(Rd) then this means eigθGP
= X skP .

By Corollary 1.4, both realizations have then the same arrangement space. Since eigθGP
is

θ -spectral, skP is then θ -spectral too. Therefore P is θ -spectral.
For the converse, assume that P is θ -spectral. Then skP has arrangement space EigG(θ ).

By definition, eigθGP
has the same arrangement space and by Corollary 1.4 there is a linear

transformation X ∈ GL(Rd) so that (3.1) commutes. Since P is the convex hull of skP , and
PG(θ ) is the convex hull of eigθGP

, X relates P and PG(θ ) as required.

We still have the following pitfalls:
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• Even if P is the θ -eigenpolytope of its edge-graph (up to invertible linear transforma-
tion), it is not necessarily θ -spectral.

• Even if the edge-graph of PG(θ ) is isomorphic to G, PG(θ ) is not necessarily θ -spectral.

Counterexamples have been provided in Example 3.4.
Spectral polytopes have properties not shared by most polytopes:

Corollary 3.8. Let P be θ -spectral. Then

(i) P can be reconstructed from its edge-graph (up to invertible linear transformations).

(ii) if P is spherical, then P realizes all the symmetries of its edge-graph (i.e., its skeleton is
an Aut(GP)-realization).

Proof. The reconstruction (i) is obtained via the θ -eigenpolytope, which is a linear transforma-
tion of P by Corollary 3.7. Part (ii) follows via Theorem 2.5.

The introduction to this thesis already contains a brief discussion about why the properties
in Corollary 3.8 are relevant and generally non-trivial.

For the rest of this section we discuss examples and non-examples for spectral polytopes.
Being spectral is still considered as a quite rare property. For most polytopes it is easy to see
that they cannot be spectral or combinatorially equivalent to any spectral polytope (often
their skeleta can also not be balanced).

Example 3.9. Let P be a neighborly polytope other than a simplex (neighborly means that its
edge-graph is the complete graph Kn). The spectrum of Kn is

Spec(Kn) = { (n− 1)1, (−1)n−1 }.

The corresponding eigenpolytopes are either a point or the regular simplex. P can therefore
not be spectral.

Example 3.10. For many prisms the edge-graph has no eigenvalue of multiplicity three. For
example, if G is the edge-graph of the hexagonal prism, then its spectrum is

Spec(G) = {31, 22, 11, 04, (−1)1, (−2)2, (−3)1}

We see that none of its eigenpolytopes is 3-dimensional, and so the 6-prism cannot be spec-
tral. Even stronger, the 6-prism has no realization as a spectral polytope.
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Example 3.11. The class of uniform polytopes is defined recursively: a uniform polygon is a
regular polygon, and a uniform polytope is a vertex-transitive polytope all whose facets are
uniform (see Appendix E). This class of polytopes has received much attention in the past,
especially in the work of Coxeter [18, 19] and Johnson [40], but a complete classification
has not been achieved to this date. This class contains the regular polytopes, Archimedean
solids, permutahedra, etc.

Most uniform polytopes seem to be “essentially θ2-spectral”, in the sense that they are com-
binatorially equivalent to a θ2-spectral polytope (we have seen in Example 3.10 that this is
not true for some prisms, and likewise, we do not expect this to be true for other “reducible”
uniform polytopes). We know this to be true in dimension two (for regular polygons). The
informal enumeration in [8] suggests this to be true in dimension three as well. Some own
numerical experiments led to no counterexamples in higher dimensions.

The image below shows the cuboctahedron (left) and a spectral version of the truncated
tetrahedron (right):

The truncated tetrahedron, as a uniform polytope, has all edges of the same length. But its
unique spectral realization is not of this form (recall Example 2.6, where we have shown
that most realizations of the truncated tetrahedron are not even balanced).

The cuboctahedron on the other hand is edge-transitive, and so is its edge-graph. A real-
ization of the cuboctahedron as a spectral polytope must therefore be edge-transitive as well
(by Corollary 3.8 (ii)) and must have all edges of the same length. In fact, the cuboctahedron
(and as we shall see, almost every edge-transitive polytope) has a unique edge-transitive re-
alization, and only this realization can be (and actually is) θ2-spectral (the hard part is to
see that this realization is not just θ2-balanced).

All spectral polytopes that we have encountered so far have been vertex-transitive. Non-
vertex-transitive spectral polytopes can be found among the Catalan solids (the duals to the
Archimedean solids), but not all of them are spectral.

We discuss two especially relevant instances:

Example 3.12. It is known that there exist exactly two edge-transitive polyhedra that are
not vertex-transitive ([36]; see also Chapter 4, and especially Chapter 6): the rhombic dode-
cahedron (the polar dual of the cuboctahedron from Example 3.11) and the rhombic triacon-
tahedron.
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3 Eigenpolytopes and Spectral Polytopes

Both have a unique edge-transitive realization that is depicted in the figure.
It turns out that the rhombic dodecahedron is θ2-spectral (this was already noted by Licata

and Powers in [47]), but the rhombic triacontahedron is not spectral, and in fact, is not even
balanced. For example, the θ2-realization of its edge-graph looks as follows:

We argue that the case of the rhombic dodecahedron is quite exceptional, and one would
not have expected to find it being spectral. Recall Figure 1.8 (on page 46), which depicts a
deformation of the skeleton of the rhombic dodecahedron that preserves its symmetry. Simi-
lar to the argument in Example 2.6, only finitely many of the realizations in the deformation
can be spectral. But in contrast to Example 2.6, this time only one of the realizations in the
deformation is the skeleton of a polytope. The fact that the unique realization that yields a
skeleton is also one of the few realizations that are spectral (and even θ2-spectral) appears
completely accidental (this accident fails to happen for the rhombic triacontahedron).

3.3 The Theorem of Izmestiev

In this section we discuss a powerful tool that can be used to identify spectral polytopes by
geometric means – the Theorem of Izmestiev. Especially remarkable, this approach automat-
ically yields θ2-spectral polytopes.

Recall that for a polytope P with 0 ∈ int(P), the polar dual P◦ is defined as

P◦ := {x ∈ Rd | 〈x , vi〉 ≤ 1 for all i ∈ V},

where the vi are an enumeration of the vertices of P.
We generalize this notion: for a vector c = (c1, ..., cn) ∈ Rn define the generalized polar

P◦(c) := {x ∈ Rd | 〈x , vi〉 ≤ ci for all i ∈ V}.

Then P◦(1, ..., 1) = P◦, and P◦(c) results from P◦ by shifting facets along their normal vectors.
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3.3 The Theorem of Izmestiev

In the following, vol(C) denotes the relative volume (relative to the affine hull) of a compact
convex set C ⊂ Rd (which will always be a polytope). One can show that vol(P◦(c)) is two
times continuously differentiable in c.

Theorem 3.13 (Izmestiev [39], Theorem 2.4). For a polytope P ⊂ Rd with 0 ∈ int(P) consider
the matrix M ∈ Rn×n (which we shall call the Izmestiev matrix of P) with components

Mi j :=
∂ 2 vol(P◦(c))
∂ ci∂ c j

�

�

�

c=(1,...,1)
.

M has the following properties:

(i) Mi j < 0 whenever i j ∈ E.

(ii) Mi j = 0 whenever i j 6∈ E and i 6= j.

(iii) M has a unique negative eigenvalue of multiplicity one.

(iv) MΦ= 0, where Φ is the arrangement matrix of (the skeleton of) P.

(v) dimker M = d.

In the language of [39], the matrix M constructed in Theorem 3.13 is a Colin de Verdière
matrix of GP , that is, a matrix satisfying a list of properties, among these (i), (ii) and (iii),
and another one known as the strong Arnold property.

Among the Colin de Verdière matrices, one usually cares about the ones with the largest
possible kernel. The dimension of this largest kernel is known as the Colin de Verdière graph
invariant µ(GP) [71], and in this sense, Theorem 3.13 proves µ(GP)≥ d. This is not too sur-
prising and was known before. However, the result of Izmestiev is remarkable for a different
reason: it shows that there is a Colin de Verdière matrix whose corank (the dimension of the
kernel) is exactly d (property (v)) and that is compatible with the geometry of P (property
(iv)).

Izmestiev furthermore shows that the matrix M can be expressed in terms of simple geo-
metric properties of the polytope: for i j ∈ E let fi j ∈ Fd−2(P◦) be the dual face to the edge
conv{vi , v j} ∈ F1(P). Then

Mi j = −
vol( fi j)

‖vi‖‖v j‖ sinÝ(vi , v j)
. (3.2)

The entries Mii , i ∈ V on the diagonal can be computed from property (iv), MΦ= 0.
The proof of the Theorem of Izmestiev uses techniques from convex geometry, in particular,

mixed volumes, and lies beyond the scope of this thesis.
If Φ is the arrangement matrix of P, and since P is full-dimensional, we have rankΦ = d.

From Theorem 3.13 (iv) and (v) then follows

spanΦ= ker M . (3.3)

Theorem 3.14. Let P be a polytope with 0 ∈ int P and M ∈ Rn×n its Izmestiev matrix. If

(i) Mii is the same for all i ∈ V , and
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3 Eigenpolytopes and Spectral Polytopes

(ii) Mi j is the same for all i j ∈ E,

then P is θ2-spectral.

Proof. By assumption, there are α ∈ R and β > 0 (using Theorem 3.13 (i)) so that

M = α Id−βA =⇒ A= −
1
β

M +
α

β
Id, (3.4)

where A is the adjacency matrix of GP .
The arrangement space of P is U := spanΦ

(3.3)
= ker M . By Theorem 3.13 (iii), ker M is the

eigenspace to the second-smallest eigenvalue of M . From (3.4) then follows that U is the eigen-
space to the second-largest eigenvalue θ2 = α/β of A. Thus, P is θ2-spectral.

By (3.2) the entries Mii , i ∈ V and Mi j , i j ∈ E are determined by local geometric properties
of the vertices and edges of P. If these vertices and edges are identical under symmetry then
they are identical geometrically and we obtain

Corollary 3.15. If P is vertex- and edge-transitive, then P is θ2-spectral.

Note that we made the implicit assumption 0 ∈ int(P). This is justified if we assume that
P is centered at the origin, that is

n
∑

i=1

vi = 0.

When rescaled with 1/n, this equation becomes a convex combination of the vertices that
yields zero. Using full dimension one can then show that 0 lies indeed in the interior of P.

We have then established that combined vertex- and edge-transitivity is a “sufficient sym-
metry” in the sense of Question 3. Unfortunately, θ2 emerges still somehow “magically” from
the use of the Theorem of Izmestiev as a black box. All we can say at this level is that θ2 is
linked to the convexity of P, and its specialness follows from the properties of the “Hessian
matrix of the volume” (see [39] for details).

Corollary 3.15 applies to all regular polytopes and thus explains the finding of Licata and
Powers [47] and our finding concerning the remaining 4-dimensional exceptions (see Exam-
ple 2.29). The consequences of Corollary 3.15 will be explored in detail in Chapter 4 (see
specifically Theorem 4.5).

It remains the question whether Theorem 3.14 already characterizes spectral polytopes,
or at least θ2-spectral polytopes. If it turns out to characterize general spectral polytopes,
then this shows that spectral polytopes are always θ2-spectral. All of this is widely open.

We close this chapter with a theorem about edge-transitive spectral polytopes. For its proof
we have to anticipate a result from Chapter 6.

Theorem 3.16. If P is an edge-transitive θ -spectral polytope, then

(i) θ = θ2.

(ii) if P is not vertex-transitive, then it is the rhombic dodecahedron (cf. Example 3.12).
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3.3 The Theorem of Izmestiev

Proof. Suppose that P is vertex-transitive. By Corollary 3.15 it is then θ2-spectral and θ = θ2.
This proves (i) if P is vertex-transitive.

Suppose now that P is not vertex-transitive. Theorem 6.1 in Chapter 6 states that an edge-
transitive polytope that is not vertex-transitive is either a polygon, the rhombic dodecahedron
or the rhombic triacontahedron (introduced in Example 3.12). Since a spectral polytope has
all the symmetries of its edge-graph (by Corollary 3.8 (ii)), a polygon is spectral if and only
if it is vertex-transitive. Of the both remaining polyhedra, only the rhombic dodecahedron
is spectral (as discussed in Example 3.12). This proves (ii). The rhombic dodecahedron is
also θ2-spectral, which proves (i) also in the not vertex-transitive case.

Summary

In this final chapter of Part I we gave an overview of eigenpolytopes and spectral polytopes.
We arrived at a geometric criterion for being θ2-spectral (see Theorem 3.14) and applied it
to polytopes of combined vertex- and edge-transitivity. This implies, via Corollary 3.8, that
a polytope of this symmetry is uniquely determined by its edge-graph and realizes all its
symmetries (for details, see Theorem 4.5 in Part II). We thereby demonstrated that spectral
graph theory adds to the toolbox of proof techniques to be of use in polytope theory.

This chapter still left us with many unanswered questions and we repeat two such ques-
tions from the introduction to which no final answer has been found:

Question 3.17 (cf. Question 1). Can we classify spectral polytopes?

Question 3.18 (cf. Question 2). Is there a spectral polytope for an eigenvalue other than θ2?

Some considerations on nodal domains make it plausible that spectral polytopes exist
only for θ2. We have shown this for edge-transitive polytopes. But no proof is known for the
general case.

Question 3.19. Are spectral polytopes (or at least θ2-spectral polytopes) already character-
ized by Theorem 3.14?

If Theorem 3.14 characterizes general spectral polytopes, then this implies a negative
answer to Question 3.18. One can verify that the rhombic dodecahedron (cf. Example 3.12)
satisfies the conditions of Theorem 3.14. This is clear for (ii). The fact that (i) holds appears
purely accidental.

We have found that many uniform polytopes are spectral, among them the regular poly-
topes and edge-transitive polytopes. Some uniform polytopes are not spectral which seems
to result from their symmetry group not being irreducible (e.g. most prisms and anti-prisms,
see Example 3.10). Others are irreducible and not spectral, but still combinatorially equiva-
lent to a spectral polytope (e.g. the truncated tetrahedron in Example 3.11). All “irreducible”
uniform polytopes that we have tested (numerically or analytically) turned out to be of this
kind.

Question 3.20. If P is an “irreducible” uniform polytope (or a Wythoffian polytope, see Ap-
pendix E), then is it combinatorially equivalent to a θ2-spectral polytope?
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3 Eigenpolytopes and Spectral Polytopes

All the spectral polytopes that we have encountered so far had a reasonably large symmetry
group. We have seen that symmetry can be a sufficient condition for being spectral, but is it
also necessary?

Question 3.21. How symmetric must a spectral polytope be? Can it have a trivial symmetry
group?

Having many symmetries is one reason for a graph to have large eigenspaces, which then
give rise to eigenpolytopes of reasonably large dimensions. But if the graph has a trivial sym-
metry group, there have to be other structural reasons for large eigenspaces. For example,
distance-regular graphs have large eigenspaces while often being without any symmetry.
However, as mentioned below Theorem 3.3, distance-regular graphs give rise to spectral
polytopes only when highly symmetric, namely, distance-transitive.
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Part II

Transitivities in Convex Polytopes
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4 Edge-Transitive Polytopes

Over the course of Part I we have seen that polytopes with sufficiently many symmetries can
have remarkable properties, such as unique reconstruction from the edge-graph and a strong
relation between geometric and combinatorial properties.

Motivated by these findings, Part II takes a deeper look at the symmetry that was recog-
nized to be at the core of this phenomenon – edge-transitivity.

As in Chapter 3, P ⊂ Rd shall always denote a convex d-dimensional polytope with edge-
graph GP . We assume that P is full-dimensional.

From this chapter on we shall assume some familiarity with the (finite) reflection groups as
well as their orbit polytopes, the Wythoffian polytopes. A sufficient introduction to both can
be found in Appendix D and Appendix E respectively. In brief, a reflection group Γ ⊆ O(Rd)
is a matrix group generated by reflections, that is,

Γ := 〈ρr | r ∈ R 〉,

where R ⊆ Rd \ {0} and ρr ∈ O(Rd) is the reflection on the hyperplane r⊥. A Wythoffian
polytope is then an orbit polytope of a finite reflection group, that is,

P = Orb(Γ , x) := conv{T x | T ∈ Γ },

for some point x ∈ Rd . The finite reflection groups admit a surprisingly concise classification,
and so do the Wythoffian polytopes.

Of particular importance are furthermore the so-called Wythoffian uniform polytopes, that
is, Wythoffian polytopes in which all edges are of the same length (see Appendix E.3). These
polytopes are our most important source for examples. Among others, they include the Pla-
tonic and Archimedean solids, prisms and permutahedra. To denote specific Wythoffian uni-
form polytopes we make use of their Coxeter-Dynkin diagrams (see Appendix E.2).

Chapter overview

In Section 4.1 we take a general look at transitivities in convex polytopes. We frame the state
of the knowledge by discussing the two currently best understood extreme cases – the regular
polytopes and the vertex-transitive polytopes.

We then shift our attention to the next “simplest” kind of transitivity – edge-transitivity. Sec-
tion 4.2 provides an overview of the known edge-transitive polytopes in lower dimensions.
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In the subsequent sections we introduce and explore a hierarchy of edge-transitive poly-
topes. In Section 4.3 we consider edge-transitive polytopes that are additionally vertex-tran-
sitive. We explore the consequences of their spectral properties. In Section 4.4 we consider
the sub-class of arc-transitive polytopes, for which we conjecture a classification in terms of
Wythoffian polytopes. In Section 4.5 we briefly address the potential symmetry class of half-
transitive polytopes. Finally, in Section 4.6 we apply a classification of Godsil (Theorem 3.3)
to give a complete list of distance-transitive polytopes.

4.1 An overview of transitivity in polytopes

Recall that Aut(P) ⊆ O(Rd) denotes the Euclidean symmetry group of P ⊂ Rd , i.e., the group
of orthogonal matrices that fix P set-wise.

Definition 4.1.

(i) P is δ-transitive for some δ ∈ {0, ..., d−1} if Aut(P) acts transitively on the δ-dimensio-
nal faces of P.

(ii) P is ∆-transitive for some ∆ ⊆ {0, ..., d − 1} if P is δ-transitive for all δ ∈∆.

For example, 0-transitive polytopes have been previously called vertex-transitive. Likewise,
1-transitive polytopes have been called edge-transitive.

Although the study of such transitivities has the appeal of a classical question, general δ-
transitive polytopes seem to be still badly understood. For example, in the 2003 edition of his
book “Convex Polytopes”, Branko Grünbaum writes [35, Section 19.1, p. 413]

No serious consideration seems to have been given to polytopes in dimension
d ≥ 4 about which transitivity of the symmetry group is assumed only for faces
of suitably low dimensions, [...].

In his article “A Hierarchical Classification of Euclidean Polytopes with Regularity Properties”
([52], or as a chapter in [5, Section 3, p. 74]), Horst Martini notes

More generally, one can consider k-transitivity for k ∈ {0,1, ..., d−1}. Among the
various questions concerning this notion, the relation between the transitivities
of different dimensions deserve to be investigated.

In essence, the following question appears widely open:

Question 4.2. For which δ ∈ {0, ..., d−1} resp.∆ ⊆ {0, ..., d−1} can we classify the δ-tran-
sitive resp. ∆-transitive polytopes?

As of yet, a full classification is known only in the case∆= {0, ..., d−1}. The∆-transitive
polytopes of this kind are transitive on faces of all dimensions. They are better known as the
regular polytopes and were completely classified by the Swiss mathematician Ludwig Schläfli
already in the 19th century [66]. The 3-dimensional regular polytopes, known as Platonic so-
lids, have been known since antiquity (see Figure 4.1).
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Figure 4.1. The five 3-dimensional regular polytopes (better known as Platonic solids).
From left to right: tetrahedron, cube (or hexahedron), octahedron, dodeca-
hedron and icosahedron.

It turns out that being regular is more restrictive in higher dimensions. This is little surpris-
ing given that the set∆= {0, ..., d−1} of symmetry restrictions grows in size with increasing
d. One finds that there are only three regular polytopes in any dimension d ≥ 5, namely, the
d-simplex, the d-cube and the d-crosspolytope (the dual of the d-cube).

In contrast, the class of 0-transitive (or vertex-transitive) polytopes is of the quite opposite
flavor. Those polytopes can most likely not be classified in a satisfying manner: it turns out
that almost every finite group G is isomorphic to the symmetry group of a vertex-transitive
polytope [2, 25] (recall also Section 1.3). The exceptions to this rule are most of the cyclic
and dicyclic groups: any polytope that attempts to have such a group of symmetries turns out
to have additional symmetries (similar to how distance-transitivity cannot be geometrically
separated from additional symmetries, cf. Section 2.4).

We have then seen that the presence of geometric transitivities is no guarantee for either
a lot of structure or richness. For every other class of transitivities we should therefore ask
the following question: do we expect this class to be more like the “regular polytopes” (quite
restricted, can be completely classified), or more like the “vertex-transitive polytopes” (wild,
probably not subject to any manageable classification).

We close this brief overview with a note on two related research directions that not quite
fit our roadmap, but which are still of major interest:

• We can drop geometric constraints and move to a more abstract combinatorial setting.
There we can find the abstract regular polytopes, the theory of which has experienced
an immense development over the last decades (see the standard books by Schulte
and McMullen [55, 56]). As it turns out, dropping convexity gives rise to a much
richer family of objects with still enough structure for a fruitful investigation.

• Instead of transitivity on some or all faces, one can ask for polytopes with few orbits on
these substructures. This path has been followed by Matteo [53]. He found that when
setting an upper bound on the number of so-called “flag-orbits”, we are still left with
only the regular polytopes as soon as we hit sufficiently high dimension.

4.2 Known edge-transitive polytopes

We shall now focus on 1-transitive (or edge-transitive) polytopes. Those are well-understood
up to dimension three.
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Enumerating the edge-transitive polygons is straightforward: for odd n, there exists only
the regular n-gon, and for even n, there is a 1-dimensional continuous family of edge-transi-
tive n-gons, including the regular n-gon, but also non-regular polygons with alternating in-
terior angles:

The edge-transitive polyhedra (that is, the 3-dimensional edge-transitive polytopes) have
also been completely enumerated (e.g. see [36]). Besides the five Platonic solids, this list con-
tains the following four other polyhedra (nine in total):

Figure 4.2. From left to right: the cuboctahedron, icosidodecahedron, rhombic dodeca-
hedron and rhombic triacontahedron. The first two polyhedra are uniform
and are known as the quasi-regular polyhedra. The latter two belong to the
Catalan solids and are the polar duals of the former two.

Among the nine edge-transitive polyhedra only the rhombic dodecahedron and the rhom-
bic triacontahedron are not also vertex-transitive (cf. Example 3.12). We shall see that this is
quite special (see Section 4.3 and Chapter 6).

And this is how far we have come: there has not been obtained a complete enumeration of
edge-transitive polytopes in any dimension d ≥ 4. This is not to say that there are no known
examples of such polytopes. In fact, many examples can be constructed from the regular poly-
topes. We describe two such constructions without proof.

Example 4.3. Let P ⊂ Rd be a regular polytope, and let w1, ..., wm ∈ Rd be an enumeration of
its edge midpoints. The convex hull conv{w1, ..., wm} turns out to be an edge-transitive poly-
tope. These polytopes are known as the rectified regular polytopes.

In dimension three, this is one way to obtain two of the four non-regular edge-transitive
polytopes (cf. Figure 4.2): the cuboctahedron (from the cube or octahedron), and the icosi-
dodecahedron (from the dodecahedron or icosahedron). In particular, rectifications of dual
Platonic solids result in the same polyhedron.
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This is not the case in four dimensions: for d = 4 rectification leads to five new edge-tran-
sitive polytopes, one for each of the six regular polytopes, excluding the 4-dimensional cross-
polytope, whose rectification is the regular 24-cell.

Example 4.4. Given a regular polytope P ⊂ Rd , the cartesian powers

Pk := P × · · · × P
︸ ︷︷ ︸

k times

⊂ Rkd

are edge-transitive.
With P being a regular n-gon, P2 is a so-called (n, n)-duoprism. The higher powers we shall

call (n, ..., n)-hyperprisms. The cartesian powers of simplices were previously described as the
Hamming polytopes (θ2-eigenpolytopes of the Hamming graphs [57], see Section 3.1).

In fact, all the polytopes constructed in the previous examples are instances of Wythoffian
uniform polytopes. A look at their Coxeter-Dynkin diagrams hints to a possible generalization
that we discuss further below (see Conjecture 4.11).

4.3 Simultaneously vertex- and edge-transitive polytopes

Our goal for this chapter is to bring structure into the class of edge-transitive polytopes. For
this purpose, we developed the hierarchical classification scheme presented in Figure 4.3.

Figure 4.3. A hierarchy of edge-transitive polytopes.

At the first branching the class of edge-transitive polytopes divides into two sub-classes: the
edge-transitive polytopes that are also vertex-transitive (e.g. the regular polytopes), and those
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that are not vertex-transitive (e.g. the rhombic dodecahedron and the rhombic triacontahe-
dron, shown in Figure 4.2).

Naively, one might assume that the class without enforced vertex-transitivity is larger since
we impose fewer symmetry constraints. To our surprise, this intuition is misleading. In fact,
in Chapter 6 we prove that all edge-transitive polytopes in four or more dimensions are also
vertex-transitive. The proof is quite technical and requires a full chapter. The focus of this
section is then on the remaining polytopes of combined vertex- and edge-transitivity.

Under the consideration that almost all edge-transitive polytopes are vertex-transitive, our
approach to higher-dimensional edge-transitivity via spectral polytopes (specifically Corol-
lary 3.15) appears now to provide a much larger coverage of this class.

It is worthwhile to recollect what our achievements of Part I can tell us about the simulta-
neously vertex- and edge-transitive polytopes:

Theorem 4.5. If P is vertex- and edge-transitive (aka. {0, 1}-transitive), then

(i) P is θ2-spectral,

(ii) P is uniquely determined by its edge-graph (up to scale and orientation),

(iii) Aut(P) is irreducible,

(iv) P realizes all the symmetries of its edge-graph, in particular, Aut(P)∼= Aut(GP),

(v) if P has edge-length ` and circumradius r, then

`

r
=

√

√ 2λ2

deg(GP)
=

√

√

2−
2θ2

deg(GP)
,

where θ2 (resp.λ2) is the second-largest eigenvalue (resp. second-smallest Laplacian eigen-
value) of the edge-graph GP ,

(vi) if the polar dual P◦ has dihedral angle α, then

cos(α) = −
θ2

deg(GP)
.

Proof. Part (i) was proven in Corollary 3.15.
From Corollary 3.8 (i) follows that P is uniquely determined up to invertible linear trans-

formation. This already determines the combinatorial type of P. Since P is inscribed (all its
vertices lie on a common sphere) and has all edges of the same length, the same holds for
its 2-faces, which are then regular polygons. Knowing the combinatorial type of P and the
shape of all 2-faces, Cauchy’s rigidity theorem (in the form of Corollary C.3) implies that P
is determined up to orientation. The possible variation in scale comes from the variation in
edge length. This proves (ii).

Suppose that Rd =W1⊕W2 is a decomposition of the ambient space into Aut(P)-invariant
subspaces. Consider the linear transformation X := 2πW1

+πW2
∈ GL(Rd). If W1 and W2 are

non-trivial invariant subspace, then X is neither orthogonal nor a pure rescaling. But Aut(P)
commutes with X , hence acts vertex- and edge-transitively on P ′ := X P. But P and P ′ have
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the same edge-graph, contradicting (ii). In conclusion, Aut(P) must have been irreducible,
which proves (iii).

Since Aut(P) is irreducible, the skeleton of P is an irreducible Σ-realization of GP for some
Σ ⊆ Aut(GP). The skeleton is then spherical by Lemma 1.12. Hence, P is a spherical θ2-spec-
tral polytope, and by Corollary 3.8 (ii) it realizes all the symmetries of its edge-graph. This
proves (iv).

Since P is θ -spectral and spherical, its skeleton satisfies the conditions of Corollary 2.21,
which proves (v) and (vi) (for the latter, recall that the dihedral angle in the dual is πminus
the angle between vertices in P, cf. Example 2.23).

4.4 Arc-transitive polytopes

In Section 2.2 we introduced arc-transitive graphs as a sub-class of the simultaneously vertex-
and edge-transitive graphs. We also briefly touched on the complementary sub-class, the half-
transitive graphs (see Remark 2.16). Both symmetries, arc- and half-transitivity, can be de-
fined for polytopes as well. This distinction is the next branching point in Figure 4.3.

This section is devoted to the discussion of arc-transitive polytopes. The half-transitive poly-
topes will be discussed in Section 4.5.

Definition 4.6. A polytope P ⊂ Rd is arc-transitive if its symmetry group acts transitively on
incident vertex-edge pairs (also known as arcs or 1-flags).

In addition to being vertex- and edge-transitive, in an arc-transitive polytope an edge can
also be mapped onto itself with “flipped orientation” (if the edge e ∈ F1(P) has end-vertices
v, w ∈ F0(P), then we can map the arc (e, v) onto the arc (e, w)).

One might assume that this edge-flip is performed by a reflectional symmetry of P. But this
is not necessarily true. One can imagine other symmetries that perform such a flip, and we
shall discuss such further below.

However, all simultaneously vertex- and edge-transitive polytopes encountered so far can
indeed realize their edge flips by reflections. This turns out to be in line with the observation
that all our examples so far have been Wythoffian:

Lemma 4.7. If each edge e ∈ F1(P) of a polytope P can be flipped by a reflection ρe ∈ Aut(P),
then P is a Wythoffian polytope.

Proof. Let Γ := 〈ρe | e ∈ F1(P)〉 be the matrix group generated by the edge-flipping reflec-
tional symmetries. Since Γ ⊆ Aut(P), this is a finite reflection group.

It remains to show that Γ acts transitively on the vertices of P. For this, fix two adjacent
vertices v, w ∈ F0(P) and let e := conv{v, w} ∈ F1(Z) be the incident edge. The map ρe ∈ Γ
exchanges the end vertices of e, that is, maps v onto w. Since the edge-graph of P is con-
nected, an appropriate concatenation of such reflections can map any vertex of P onto any
other vertex (along a path between v and w). Hence, Γ acts vertex-transitively.

Thus, if we want to go beyond Wythoffian polytopes, we need to consider edge-flips that
are not reflections. Recall that a reflection is a linear transformation T ∈ O(Rd) with spec-
trum {1d−1, (−1)1}. Consider the following generalizations:
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4 Edge-Transitive Polytopes

Definition 4.8.

(i) A k-reflection T ∈ O(Rd) is a linear transformation with spectrum {1d−k, (−1)k }.

(ii) A k-reflection group Γ ⊆ O(Rd) is a matrix group generated by k-reflections.

Clearly, the 1-reflections are just the usual reflections, and the 1-reflection groups are the
usual reflection groups.

Theorem 4.9. An arc-transitive polytope P is the orbit polytope of a k-reflection group for some
k ≥ 1.

Proof. Let e ∈ F1(P) be an edge of P. By arc-transitivity, there exists a symmetry Te ∈ Aut(P)
that flips e. Since Te exchanges the end-vertices of e, the smallest number m ≥ 1 for which
T m

e = Id must be even.
The map T ′e := T m/2

e is then a symmetry of P, but is also an involution (i.e., T ′2e = Id). As
an non-identity involutory isometry, its spectrum is of the form {(−1)k, 1d−k} for some k ≥ 1,
and T ′e is a k-reflection. By edge-transitivity, T ′e can be chosen as a k-reflection with the same
value k for every e ∈ F1(P).

As in the proof of Lemma 4.7, we show that the group Γ := 〈T ′e | e ∈ F1(P)〉, which is a fi-
nite k-reflection group, acts transitively on the vertices of P. Thus, P is an orbit polytope of Γ .

A sufficient understanding of k-reflection groups might therefore help in classifying the arc-
transitive polytopes1. Unfortunately, we have not yet constructed any new arc-transitive poly-
topes using generalized reflection groups. The question is then whether this is possible at all.

Question 4.10. Are there non-Wythoffian arc-transitive polytopes?

Our lack of examples (despite quite some effort2) makes us believe that the answer is No. A
careful examination of the known Wythoffian examples and their Coxeter-Dynkin diagrams
led us to the following conjecture:

Conjecture 4.11. The following are equivalent:

(i) P is arc-transitive.

(ii) P is a Wythoffian uniform polytope represented by a “transitive Coxeter-Dynkin diagram”,
i.e., the symmetry group of the diagram acts transitively on the ringed vertices.

For a reminder on the representation of Wythoffian polytopes by Coxeter-Dynkin diagrams
see Appendix E.2. Examples of such diagrams are shown in Figure 4.4 further below.

1A complete classification of general k-reflection groups seems unlikely: every non-abelian simple group has a
faithful representation as a k-reflection group for a sufficiently large k (namely, its left-regular representa-
tion). It might be feasible to classify the k-reflection groups for small fixed values of k. For example, the 2-
resp. 4-reflection groups are related to (though distinct from) the complex and quaternionic reflection groups.

2We checked (numerically) all arc-transitive graphs on n≤ 30 vertices, and also all arc-transitive graphs in the
Mathematica graph library on n≤ 1000 vertices. For this, we computed the θ2-eigenpolytope and compared
its edge-graph to the original graph.
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4.4 Arc-transitive polytopes

The hard part of Conjecture 4.11 is (i) =⇒ (ii). In contrast, (ii) =⇒ (i) seems tractable
(but a proof is not part of this thesis). If true, Conjecture 4.11 enables a systematic enu-
meration of arc-transitive polytopes. For the rest of this section we shall take a look at this
potential classification.

A potential classification of arc-transitive polytopes

Suppose that Conjecture 4.11 is true. We explore the potential classification of arc-transitive
polytopes that would follows from that.

Recall that the (irreducible) finite reflection groups admit a surprisingly compact classifica-
tion into the four infinite families I2(n), Ad , Bd and Dd (n, d ≥ 3), and the seven exceptional
groups I1, H3, H4, F4, E6, E7 and E8 (the subscripts denote dimension). The classification of
Wythoffian uniform polytopes follows from this by a purely combinatorial enumeration of
the possible placements of rings in their Coxeter-Dynkin diagrams. There are some subtleties
because different diagrams can describe the same polytope. We discuss this below (without
any further proofs).

We shall take a look at the placements of rings that give rise to transitive diagrams.

Observation 4.12. A Coxeter-Dynkin diagram describes a full-dimensional polytope if and
only if each connected component contains a ringed vertex (see Observation E.3). Thus, if a
transitive diagram is not connected, then all its components must be identical. We can there-
fore focus on a single component.

Such a component is certainly transitive if one of the following holds:

(i) it has only a single ringed vertex.

(ii) it is one of the Coxeter-Dynkin diagrams depicted in Figure 4.4.

Figure 4.4. Transitive Coxeter-Dynkin diagrams with more than one ringed vertex.

There are other transitive diagrams besides the ones depicted in Figure 4.4. However, it turns
out that the other diagrams do not describe any new polytopes: any other transitive diagram
generates a polytope that is also generated by a diagram with a single ring or a diagram listed
in Figure 4.4.

Example 4.13. Each regular polytope is represented by a Coxeter-Dynkin diagram which is
a path graph with a single ring on one of its end vertices (cf. Definition E.11). By shifting the
ring by one vertex we obtain the rectified regular polytopes discussed in Example 4.3. More
general configurations with a single ring generalize on this construction.
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For example, the polytopes of the Ad -family obtained from a diagram with a single ringed
vertex are called hyper-simplices. Geometrically, the hyper-simplex∆d,k can be constructed as
the convex hull of all 01-vectors in {0,1}d+1 with exactly k many 1-entries.

Example 4.14. If P is represented by a transitive Coxeter-Dynkin diagram, so are its carte-
sian powers. The diagram of Pk is the disjoint union of k copies of the diagram of P. Thus Ex-
ample 4.4 works not just with regular polytopes, but with any arc-transitive Wythoffian uni-
form polytope.

Polytopes that can be obtained as cartesian products are called prismatic. We shall exclude
them from the further discussion as their classification follows immediately from the classifi-
cation of the non-prismatic polytopes. One exception to this rule are the hypercubes, which
are technically prismatic, but will still be considered.

As a general rule of thumb, by Conjecture 4.11, each irreducible finite reflection group in
dimension d should be expected to yield exactly d unique arc-transitive polytopes. This is
most plausible if the Coxeter-Dynkin diagram of the group has no symmetries: the d distinct
polytopes result from the d ways to place a single ring. If there are symmetries, then there are
two opposing effects: on the one hand, there are now symmetric configurations with multiple
rings resulting in new polytopes. On the other hand, several of the placements with a single
ring now represent the same diagram up to symmetry. It turns out that these two effects
cancel each other out and we still get d polytopes (consider the example in Figure 4.5).

Figure 4.5. Left: the four transitive diagrams for B4 (the diagram has no symmetries be-
cause of the asymmetric placement of the edge-label “4”). Right: the four
transitive diagrams for A4 (the diagram has symmetries).

By this reasoning, if there are κ(d) irreducible reflection groups in dimension d, we would
expect to find exactly dκ(d) (non-prismatic) arc-transitive polytopes in dimension d. How-
ever, this reasoning fails because distinct diagrams can describe the same polytope. These
“coincidences” are manageable:

• All but one polytope of the Dd -family are also generated by the group Bd ⊃ Dd . Thus,
Dd provides only one polytope rather than d (further exceptions happen for d ∈ {3, 4},
see below). This unique polytope is called the demi-cube and can be obtained as the
convex hull of all vectors in {−1,1}d with an even number of 1-entries (half of the
vertices of the cube, therefore the name).

• The version of I2(n) with two rings yields the regular 2n-gon, which is also generated
by I2(2n). Thus, I2(n) generates only a single unique polytope rather than two.

• In dimension three holds A3
∼= D3 (one can check that their Coxeter-Dynkin diagrams

coincide). Thus, the pair A3/D3 accounts only for a single polytope (the tetrahedron,
which is the demi-cube of this dimension).
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• In dimension four two exceptions occur: one of the B4-polytopes coincides with an F4-
polytope (the rectified 4-crosspolytope coincides with the 24-cell) and the 4-dimensio-
nal demi-cube from D4 coincides with the 4-crosspolytope from B4. Thus, D4 provides
no unique polytope and B4 yields only three rather than four unique polytopes.

Considering all these exceptions we arrive at the following conjectured number of (non-
prismatic) arc-transitive polytopes by dimension:

d 1 2 3 4 5 6 7 8 ≥ 9
# 1 ∞ 7 15 11 19 22 25 2d + 1

In the dimensions “without exceptions”, that is, d ≥ 9 and d = 5, we obtain exactly 2d+1
irreducible arc-transitive polytopes (d from Ad , d from Bd and one from Dd). In dimension
d ∈ {6,7, 8} there are 3d + 1 polytopes (d additional polytopes from the group Ed).

For d ∈ {3,4} various exceptions occur. The number seven for d = 3 agrees with the num-
ber given in Section 4.2 (excluding the two polyhedra that are not vertex-transitive). For
d = 4 we obtain the following 15 (non-prismatic) arc-transitive polytopes:

• the six 4-dimensional regular polytopes,

• five rectifications of regular polytopes (the rectification of the 4-crosspolytope was al-
ready counted as the 24-cell, cf. Example 4.3),

• two “bitruncations” (of simplex and 24-cell), and

• two “runcinations” (of simplex and 24-cell).

The terminology for the various modifications of the regular polytopes goes back to Norman
Johnson [40]. Their Coxeter-Dynkin diagrams are depicted in Figure 4.6.

Figure 4.6. The Coxeter-Dynkin diagrams of the (conjectured) 4-dimensional non-pris-
matic arc-transitive Wythoffian uniform polytopes (and the duoprisms).
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4.5 Half-transitive polytopes

A half-transitive polytope is a polytope that is vertex- and edge-transitive, but that is not arc-
transitive. That is, its edges cannot be flipped in orientation.

By Theorem 4.5 (iv), the edge-graph of a half-transitive polytope must be half-transitive.
Since half-transitive graphs are already quite rare, the existence of half-transitive polytopes
seems rather unlikely. We make a bold claim:

Conjecture 4.15. There are no half-transitive polytopes.

Example 4.16. Recall the Holt graph (see Figure 4.7), the smallest half-transitive graph. We
show that it is not the edge-graph of a half-transitive polytope.

Figure 4.7. The Holt graph – the smallest half-transitive graph.

Suppose that P ⊂ Rd is a half-transitive polytope and has the Holt graph as its edge-graph.
P is then θ2-spectral by Theorem 4.5 (i). In particular, its dimension matches the multiplicity
of θ2, which is six. The edge-graph of a polytope in dimension six has a degree of at least
six. But the vertex degree of the Holt graph is only four.

Observation 4.17. The argument of Example 4.16 can be applied more generally. In order
for a graph G to be the edge-graph of a simultaneously vertex- and edge-transitive polytopes,
the multiplicity of θ2 must be at most deg(G).

Half-transitive graphs G with dimEigG(θ ) ≤ deg(G) exist, but are even rarer. Numerical
experiments on such candidates have not resulted in any half-transitive polytopes.

4.6 Distance-transitive polytopes

A polytope is distance-transitive if its symmetry group acts distance-transitively on its edge-
graph (cf. Definition 2.31). Note that “distance” in the definition of distance-transitivity still
refers to the graph-theoretical distance along the edge-graph rather than a Euclidean dis-
tance between vertices.

Godsil [32] classified all distance-regular graphs that appear as the edge-graphs of their
θ2-eigenpolytopes (see Theorem 3.3). We noted that all graphs in this list are in fact distance-
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transitive. By Corollary 3.8 (ii), their eigenpolytopes are therefore distance-transitive poly-
topes. Conversely, by Theorem 4.5 (ii), every distance-transitive polytope can be obtained in
this way. In other words, we obtain a complete classification of distance-transitive polytopes:

Theorem 4.18. If P ⊂ Rd is distance-transitive then P is one of the following:

(i) a regular polygon (d = 2),

(ii) the regular dodecahedron (d = 3),

(iii) the regular icosahedron (d = 3),

(iv) the d-dimensional crosspolytope,

(v) a Hamming polytope (aka. a cartesian power of a regular simplex; this includes d-simplices
and d-cubes, see Example 4.4),

(vi) a hyper-simplex ∆d,k (see Example 4.13),

(vii) a d-dimensional demi-cube (the unique Dd -polytope, see Example 4.14),

(viii) the 221-polytope (also known as Schläfli polytope, d = 6),

(ix) the 321-polytope (also known as Gosset polytope, d = 7).

The ordering of the polytopes in this list agrees with the ordering of graphs in Theorem 3.3.

The latter two polytopes (viii) and (ix) where first constructed by Gosset in [34]. Distance-
transitive polytopes are arc-transitive, and in fact, all of the polytopes in Theorem 4.18 are
Wythoffian uniform polytopes in line with Conjecture 4.11 (see Figure 4.8 for their Coxeter-
Dynkin diagrams)

Figure 4.8. The Coxeter-Dynkin diagrams of the distance-transitive polytopes.

Theorem 4.18 lists all the regular polytopes, excluding the 4-dimensional exceptions: the
24-cell, 120-cell and 600-cell are not distance-transitive. The distance-transitive polytopes
therefore form a distinct class of highly symmetric polytopes that is not immediately related
to the class of regular polytopes.
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Finally, the 4-dimensional Petersen polytope as studied by Powers in [62] (θ3-eigenpolytope
of the Petersen graph, see also Section 3.1) is contained in this list as the hyper-simplex∆4,2.

Summary

In this chapter we presented a hierarchical classification scheme for edge-transitive polytopes
that is meant to help in the process of classification. As of now, it seems that essentially only
a single branch of the hierarchy is populated:

• Almost all edge-transitive polytopes are vertex-transitive. A proof was postponed until
Chapter 6.

• All known polytopes of combined vertex- and edge-transitivity are arc-transitive. We do
not know any half-transitive polytopes.

• All known arc-transitive polytopes are Wythoffian. We made a precise conjecture about
the shape of the Coxeter-Dynkin diagrams of arc-transitive Wythoffian polytopes (Con-
jecture 4.11).

Even though the edge-transitive polytopes feel “closer to” the vertex-transitive polytopes
than to the regular polytopes (in terms of the restrictions on structure), our current picture of
the situation seems to suggest that they behave more like the latter. It might well be that the
class of edge-transitive polytopes has a quite tractable classification in terms of Wythoffian
polytopes and a few lower dimensional exceptions that are not vertex-transitive.

Conjecture 4.19. All edge-transitive polytopes in dimension d ≥ 4 are Wythoffian uniform poly-
topes.
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For this chapter we take a pause from our investigation of edge-transitivity and instead con-
sider vertex-transitivity for a special class of polytopes – so-called zonotopes.

The purpose of this investigation in the larger picture of this thesis is its application in the
upcoming Chapter 6. In Theorem 6.10 we need to use that certain geometrically defined po-
lytopes are always vertex-transitive, which is one of the main results of this section.

The literature defines zonotopes in multiple equivalent ways, depending on the subfield of
geometry, combinatorics or algebra from which they are approached. We present the most
relevant definitions for our cause (other definitions are given in Appendix C.1)

Definition 5.1 (cf. Definition C.4). A zonotope Z ⊆ Rd is a polytope that satisfies any (and then
all) of the following equivalent conditions:

(i) Z is the Minkowski sum of (finitely many) line segments.

(ii) Z has only centrally-symmetric faces.

(iii) Z has only centrally-symmetric 2-faces.

The equivalence of these definitions is well-established, but some directions are far from
obvious (see [54] for the direction (iii)=⇒ (i),(ii), or the references in [79, Section 7.3] for
a general overview).

Figure 5.1. Some examples of 3-dimensional zonotopes.

The goal of this chapter is to obtain a complete classification of vertex-transitive zonotopes.
That this is possible in a concise manner is quite surprising: both classes, the zonotopes and
the vertex-transitive polytopes, are intractably rich in structure. It was therefore unexpected
to obtain the following result:
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Theorem 5.2. A vertex-transitive zonotope is a Γ -permutahedron, where Γ ⊆ O(Rd) is a finite
reflection group.

A permutahedron is a generic Wythoffian polytope (more precisely defined in Definition 5.9,
or Definition E.6 in the appendix). Permutahedra are sufficiently well understood, so that a
complete classification can be derived.

On our way we shall furthermore prove the following:

Theorem 5.3. If a zonotope is inscribed (that is, all its vertices are on a common sphere) and
all its edges are of the same length, then it is a (uniform) Γ -permutahedron.

Note that Theorem 5.3 is neither stronger nor weaker than Theorem 5.2: it is not clear a
priori that all vertex-transitive zonotopes have edges of the same length (in fact, this is not
true), nor that the zonotopes addressed by Theorem 5.3 are vertex-transitive (this is true,
but will only follow from our results).

Chapter overview

In Section 5.1 we introduce the relevant terminology and discuss some fundamental results
concerning zonotopes and Γ -permutahedra. In particular, we discuss the generators of a zono-
tope, explain how they determine its faces and how they characterize permutahedra via root
systems.

The proofs of the main theorems (Theorem 5.2 and Theorem 5.3) are presented over the
course of Section 5.2 and Section 5.3. In Section 5.2 we deal with the 2-dimensional case
and explain how this serves as a base case for higher dimensions. In Section 5.3 we first
prove Theorem 5.3 (which is surprisingly easy) and then use this to prove Theorem 5.2. In
Section 5.4 we then derive an explicit classification of the relevant zonotope classes from the
classification of finite reflection groups.

We close in Section 5.5 with some miscellaneous results and notes, such as a new charac-
terization of root systems, and some comments on general inscribed zonotopes and hyperplane
arrangements.

5.1 Generators, faces, symmetry and permutahedra

In this section we recollect the most important properties and terminology for zonotopes and
introduce relevant sub-classes. Consider also Appendix C.1 for proofs of some of the less ob-
vious claims.

For this chapter let Z ⊂ Rd be a full-dimensional zonotope of dimension d ≥ 2.

Generators

Zonotopes are always centrally symmetric, and we may assume Z = −Z . By Definition 5.1
(ii) Z can then be written as a Minkowski sum of line segments, that is,

Z = Zon(R) :=
∑

r∈R

conv{0, r},
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for some finite centrally symmetric set R ⊂ Rd . We set Zon(∅) := {0}. We say that Z is gen-
erated by R. A zonotope Z 6= {0} can be generated by many different sets.

We say that R ⊂ Rd is reduced if R∩span{r}= {±r} for all r ∈ R. Z is generated by a unique
reduced set, the elements of which are called (standard) generators of Z (cf. Proposition C.7).
This set is explicitly given by

Gen(Z) := {r ∈ Rd | conv{±r} is the translate of an edge of Z}.

Then Zon(Gen(Z)) = Z . Moreover, if R ⊂ Rd is finite, centrally symmetric and reduced, then
Gen(Zon(R)) = R.

Faces

The faces of Z are again zonotopes (cf. Corollary C.6), that is, they can be written in terms of
generators. In fact, they can be written in terms of generators of Z . We need the following:

Definition 5.4. Let R ⊂ Rd be a finite centrally-symmetric set:

(i) a subset S ⊂ R is called semi-star of R if it is the intersection of R with a half-space that
contains exactly half the elements of R.

In particular, S contains exactly one element from each subset {±r} ⊆ R.

(ii) a subset F ⊆ R is called a flat of R if it is the intersection of R with a linear subspace,
or equivalent, if F = R∩ span F .

Figure 5.2. Visualization of a semi-star S ⊂ R and a flat F ⊆ R.

Lemma 5.5 (see also Lemma C.10). For F ⊆ Gen(Z) the following are equivalent:

(i) F is a flat,

(ii) F = Gen( f ) for some non-empty face f ∈ F(Z).

Lemma 5.6 (see also Lemma C.11). The vertices of Z are in one-to-one correspondence with
the semi-stars of Gen(Z): for each semi-star S ⊂ Gen(Z)

vS :=
∑

r∈S

r ∈ F0(P)

is a vertex of Z. Conversely, for v ∈ F0(P) there is a unique semi-star Sv ⊂ Gen(Z) with v = vSv
.

As indicated, proofs can be found in Appendix C.1.
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Symmetries

The operations Zon and Gen commute with multiplication by invertible matrices, i.e., Zon(XR)
= X Zon(R) and Gen(X Z) = X Gen(Z) for all X ∈ GL(Rd). As a consequence, the zonotope
and its generators have the same Euclidean symmetries (orthogonal transformations that fix
them set-wise):

Proposition 5.7. Aut(Z) = Aut(Gen(Z)).

For later use we characterize vertex-transitivity in terms of generators. Recall that being
congruent (or isometric) means “related by an orthogonal transformation”.

Proposition 5.8. Z is vertex-transitive if and only if all semi-stars of Gen(Z) are congruent.

Proof. By Lemma 5.6 there is a one-to-one relation between the vertices of Z and the semi-
stars of Gen(Z). Note that the given map Gen(Z) ⊃ S 7→ vS commutes with multiplication
by invertible matrices, i.e., X vS = vXS for all X ∈ GL(Rd).

Suppose that Z is vertex-transitive and fix two semi-stars S, S′ ⊂ Gen(Z). Then there is a
map X ∈ Aut(Z) with X vS = vS′ . By Proposition 5.7 we have X ∈ Aut(Gen(Z)), and XS is a
semi-star as well. Thus, vXS = X vS = vS′ , and since the relation is one-to-one, XS = S′ and
the semi-starts are congruent.

Conversely, suppose that all semi-stars are congruent and fix two vertices v, v′ ∈ F0(P).
Since Sv , Sv′ ⊂ Gen(Z) (as defined in Lemma 5.6) are congruent, there is a map X ∈ O(Rd)
with XSv = Sv′ . Then v′ = vSv′

= vXSv
= X vSv

= X v. It remains to show X ∈ Aut(Z). By
Proposition 5.7 we can show X ∈ Aut(Gen(Z)) instead. Since Gen(Z) is finite and X is
invertible, it suffices to show X r ∈ Gen(Z) for all r ∈ Gen(Z). Fix a generator r ∈ Gen(Z).
Then either r ∈ Sv and X r ∈ XSv = Sv′ ⊂ Gen(Z). Or r 6∈ Sv , but by definition of semi-star
−r ∈ Sv =⇒ X r = −X (−r) ∈ −Sv′ ⊂ Gen(Z).

Permutahedra and root systems

Our main results require the notion of the Γ -permutahedron. A permutahedron is a “generic”
Wythoffian polytope (see also Definition E.6).

Definition 5.9. Let Γ ⊆ O(Rd) be a finite reflection group. A Γ -permutahedron P is a polytope
that satisfies any (and then all) of the following equivalent conditions:

(i) P is an orbit polytope Orb(Γ , x) of a generic point x ∈ Rd , that is, x is not fixed by any
non-identity element of Γ .

(ii) Γ ⊆ Aut(P) and Γ acts regularly (i.e., transitively and freely) on the vertices of P.

Most permutahedra are not zonotopes, but each permutahedron has one or more realiza-
tions as a zonotope. This includes the unique realization in which all edges are of the same
length (the uniform permutahedron) (see Corollary 5.11 below).

The zonotopes among the Γ -permutahedra (we shall call them the Γ -zonotopes) can be char-
acterized in terms of so-called root systems. We recommend Appendix D.2 for a reminder on
root systems and their connection to reflection groups. In short, a root system R ⊂ Rd \ {0}
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Figure 5.3. The 3-dimensional uniform permutahedra to the reflection groups (from left
to right) A3, B3 and H3.

is a finite set of non-zero vectors with ρrR = R for all r ∈ R, where ρr ∈ O(Rd) denotes the
reflection on the hyperplane r⊥. In particular, root systems are centrally symmetric.

Each centrally symmetric set R ⊂ Rd \ {0} induces a reflection group

Γ (R) := 〈ρr | r ∈ R〉,

the so-called Weyl group of R. Root systems are characterized as those centrally symmetric
sets for which Γ (R) is a finite reflection group (this is non-trivial but well-known).

Lemma 5.10. Given a zonotope Z ⊂ Rd and a finite reflection group Γ ⊆ O(Rd), the following
are equivalent:

(i) Z is a Γ -permutahedron,

(ii) Gen(Z) is a root system with Weyl group Γ .

The proof of Lemma 5.10 requires the concept of the Weyl chamber of Γ . For this, consider
the hyperplane arrangement

H(Γ ) := {r⊥ | ρr ∈ Γ }.

The Weyl chambers are the connected components of the complement Rd \H(Γ ).
It is known that Γ acts regularly on its Weyl chambers. In a sense, the Weyl chambers con-

tain the “generic points” of Γ . In particular, Orb(Γ , x) is a Γ -permutahedron if and only if x is
an element of a Weyl chamber. We conclude that a Γ -permutahedron has exactly one vertex
per Weyl chamber.

Proof of Lemma 5.10. Suppose that Z is a Γ -permutahedron. We show that Γ (Gen(Z)) = Γ .
Since then Γ (Gen(Z)) is finite, Gen(Z) must be a root system.

Let ρr ∈ Γ be some generating reflection of Γ . Since Z is a “generic” orbit polytope of Γ , no
vertex of Z is fixed by ρr , that is, no vertex lies on r⊥. But since r⊥ is a reflection hyperplane
of Z , there are vertices on both sides of r⊥, and there must be an edge e ∈ F1(Z) crossing
the hyperplane. Since ρr is a symmetry of Z , this edge e must be perpendicular to r⊥, that
is, e = conv{±αr} for some α > 0. Then αr ∈ Gen(Z) and ρr ∈ Γ (Gen(Z)). We established
Γ ⊆ Γ (Gen(Z)).

For the other inclusion let ρr ∈ O(Rd) be some generating reflection of Γ (Gen(Z)), i.e.,
conv{±r} is the translate of an r-parallel edge e ∈ F1(P). Since there is a single vertex of
Z per Weyl chamber, the end vertices of e are in different Weyl chambers and e crosses a
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reflection hyperplane. Since reflection on this hyperplane is a symmetry of Z , we find that
e is perpendicular to the hyperplane, which must then be r⊥. Thus, ρr ∈ Γ as well and we
found Γ (Gen(Z)) ⊆ Γ .

We then arrive at Γ = Γ (Gen(Z)) and proved (i)=⇒ (ii).
For the other direction, assume that Gen(Z) is a root system and set Γ := Γ (Gen(Z)) ⊆

Aut(Gen(Z)). By Proposition 5.7 we have Γ ⊆ Aut(Z). It remains to show that Γ acts regu-
larly on the vertices of Z , to show that Z is a Γ -permutahedron in the sense of Definition 5.9
(ii).

Showing that Γ acts transitively proceeds similarly to the proof of transitivity in Lemma 4.7:
fix adjacent vertices v, w ∈ F0(Z) and let e := conv{v, w} ∈ F1(Z) be the incident edge. Then
e is a translate of conv{±r} with r := (v − w)/2. Thus r ∈ Gen(Z) and ρr ∈ Γ ⊆ Aut(Z). In
particular, ρr exchanges the end vertices of e and maps v to w. Since the edge-graph of Z is
connected, an appropriate chain of such reflections can map any vertex to any other.

To show that Γ acts regularly, recall the one-to-one correspondence between vertices and
semi-stars described in Lemma 5.6. Suppose that v ∈ F0(P) is a vertex fixed by a non-identity
element of Γ and let Sv be the associated semi-star. Then v is not in a Weyl chamber of Γ ,
in particular, v is on a reflection hyperplane r⊥, r ∈ Gen(Z). That is, ρr ∈ Γ fixes v. Since
exactly one of ±r is in Sv , the other one must be in ρrSv , and Sv 6= ρrSv . But by linearity
vρr Sv

= ρr vSv
= ρr v = v, contradicting uniqueness of the semi-star associated with v.

This finalizes the proof of (ii)=⇒ (i)

Corollary 5.11. For each finite reflection group Γ ⊆ O(Rd) there is a unique Γ -permutahedron
(up to scale and orientation) with all edges of the same length. This Γ -permutahedron is a zono-
tope.

Proof. Consider the zonotope generated from the root system R := {r ∈ Sd−1 | ρr ∈ Γ }.

5.2 The case d = 2

The proof of the main theorems starts with the case of dimension two. Showing that the 2-
dimensional vertex-transitive zonotopes are permutahedra is rather straightforward: a 2-
dimensional zonotope is a centrally symmetric 2n-gon, which is vertex-transitive if

(i) it is a regular 2n-gon, or

(ii) n is even and has alternating edge lengths as seen in Figure 5.4.

This list is complete: every vertex-transitive polygon is an orbit polytope to a dihedral group.
The list contains all these orbit polytopes that are centrally symmetric.

If Z is a 2n-gon as listed in (i) or (ii), Gen(Z) consists of 2n vectors in R2, equally spaced
by an angle of π/n. In the case (ii) these vectors alternate in length (cf. Figure 5.4). These
are exactly the root systems that corresponds to the reflection groups I2(n) (if n ≥ 3) and
I1 ⊕ I1 (if n= 2). Applying Lemma 5.10, we obtain the characterization in dimension two.

Corollary 5.12. A 2-dimensional vertex-transitive zonotope is a Γ -permutahedron.
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5.2 The case d = 2

Figure 5.4. Some 2-dimensional vertex-transitive zonotopes and their generators.

Now, the true main result of this section is the following tool for extending this character-
ization to general dimension:

Theorem 5.13. If all 2-faces of Z are vertex-transitive, then Z is a Γ -permutahedron.

Proof. Choose generators r, s ∈ Gen(Z). We show ρrs ∈ Gen(Z), establishing that Gen(Z) is
a root system. Z is then a Γ -permutahedron by Lemma 5.10.

The case r = ±s is trivial. We therefore assume that

R := Gen(Z)∩ span{r, s}

is 2-dimensional. In particular, R ⊆ Gen(Z) is a 2-dimensional flat. By Lemma 5.5 there exist
a 2-face f ∈ F2(Z) with Gen( f ) = R. By assumption, f is vertex-transitive and R therefore
a root system (by Corollary 5.12 and Lemma 5.10). In conclusion, ρrs ∈ R ⊆ Gen(Z).

To apply Theorem 5.13 we would need to know that certain 2-faces of Z are vertex-transi-
tive, and this is often not evident from the situation (we start from a vertex-transitive zono-
tope, but know nothing about its faces). We need to use the following auxiliary result:

Proposition 5.14. If Z ⊂ R2 is a 2-dimensional zonotope which

(i) is inscribed (i.e., has all vertices on a common circle), and

(ii) has the same edge directions as a regular 2n-gon,

then Z is vertex-transitive.

This statement is elementary. We sketch its proof:

Proof of Proposition 5.14. A centrally symmetric polygon has exactly twice as many edges as
edge-directions (the edges come in parallel pairs). By (ii), Z and a regular 2n-gon have the
same number of edge directions, and thus Z must be a 2n-gon as well.

Let αi ∈ R be the exterior angle at the i-th vertex of Z (see Figure 5.5). By (ii) we have αi =
kiπ/n, where ki ∈ N is an integer ≥ 1. The exterior angles of a (convex) polygon add up to
2π, and so we estimate

2π=
2n
∑

i=1

αi =
2n
∑

i=1

kiπ

n
≥ 2n ·

1 ·π
n
= 2π.
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5 Vertex-Transitive Zonotopes

Figure 5.5. The exterior angles of a (convex) polygon always add up to 2π.

We conclude ki = 1 and all exterior angles are equal. It follows that also all interior angles
are equal.

For simplicity, assume that Z , and all the polygons mentioned below, are of circumradius
one. Let ` be the length of the shortest edge of Z , which cannot be longer than an edge of a
regular 2n-gon. There exists a vertex-transitive 2n-gon with an edge of this length: imagine
a continuous transition from a regular 2n-gon to a regular n-gon by shortening every second
edge. At some point the shortening edges attain length `.

But an inscribed polygon with prescribed identical interior angles at every vertex is already
uniquely determined by placing a single edge: the placement of the incident edges follows
uniquely from the given restrictions, which, when applied repeatedly, determines the whole
polygon. Therefore, Z must be this vertex-transitive polygon.

5.3 The general case

Definition 5.15. A zonotope is called uniform, if it is inscribed (i.e., all its vertices are on a
common sphere) and all its edges are of the same length.

It is surprisingly easy to show that uniform zonotopes are indeed Γ -permutahedra, which
is one of our main results:

Proof of Theorem 5.3. Faces of zonotopes are zonotopes, and faces of inscribed polytopes are
inscribed. It follows easily that the faces of uniform zonotopes are uniform zonotopes again.
This holds in particular for the 2-faces.

An inscribed polygon with all edges of the same length must be a regular polygon. It follows
that the 2-faces of a uniform zonotope Z are regular 2n-gons, in particular, vertex-transitive.
By Theorem 5.13, Z is a Γ -permutahedron.

Note that the identifier “uniform” was chosen appropriately. By Theorem 5.3 uniform zo-
notopes belong to the Wythoffian uniform polytopes (they are Γ -permutahedra for which all
edges are of the same length).
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5.3 The general case

The technique of the proof of Theorem 5.3 cannot be immediately applied to vertex-tran-
sitive zonotopes, as their 2-faces are not necessarily regular. We need the following construc-
tion:

Definition 5.16. The normalization of Z is the zonotope

Z∗ := Zon
�¦ r
‖r‖

�

�

� r ∈ Gen(Z)
©�

.

The normalization has the same edge directions as Z , but all edges are of the same length.
This suffices to prove that a vertex-transitive zonotope Z is a Γ -permutahedron.

Proof of Theorem 5.2. We first show that Z∗ is a Γ -permutahedron.
Since Z is vertex-transitive, by Proposition 5.8 all semi-stars of Gen(Z) are congruent. Nor-

malizing the generators does not change this, and all semi-stars of Gen(Z∗) are congruent
too. By Proposition 5.8, Z∗ is then vertex-transitive, in particular, inscribed. As a normal-
ization, it has also all edges of the same length, thus is uniform. By Theorem 5.3, Z∗ is a
Γ -permutahedron and Gen(Z∗) therefore a root system by Lemma 5.10.

We now translate this result to Z . For this, choose a 2-face f ∈ F2(Z). The set

R∗ :=
¦ r
‖r‖

�

�

� r ∈ Gen( f )
©

= Gen(Z∗)∩ span(Gen( f ))

is a 2-dimensional flat in the root system Gen(Z∗), and is therefore a root system itself. A
2-dimensional root system consists of vectors that are equally spaced by an angle π/n for
some n ∈ N, or in other words, the elements of R∗ are the edge directions of a regular 2n-gon.
The 2-face f has the edge directions (but not necessarily the edge lengths) contained in R∗,
hence, the same edge direction as a regular 2n-gon. Also, as the face of a vertex-transitive
polytope, f is inscribed. By Proposition 5.14 f is therefore vertex-transitive.

We found that all 2-faces of Z are vertex-transitive. Theorem 5.13 then proves that Z is a
Γ -permutahedron.

We obtained the following equivalences:

Theorem 5.17. The following are equivalent:

(i) Z is vertex-transitive.

(ii) Z is a Γ -permutahedron.

(iii) all semi-stars of Gen(Z) are congruent.

(iv) Gen(Z) is a root system.

Proof. (iii)
5.8

⇐⇒ (i)
5.2

⇐⇒ (ii)
5.10

⇐⇒ (iv), where the numbers over the arrows denote an appli-
cation of Proposition 5.8, Theorem 5.2 and Lemma 5.10 respectively.

Corollary 5.18.

(i) The faces of a vertex-transitive zonotope are vertex-transitive.
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5 Vertex-Transitive Zonotopes

(ii) If a zonotope is inscribed and has all edges of the same length (that is, uniform), then it
is vertex-transitive.

(iii) A zonotope in which all faces (in fact, all 2-faces) are uniform (resp. vertex-transitive) is
itself uniform (resp. vertex-transitive).

Proof. If Z is vertex-transitive then Gen(Z) is a root system by Theorem 5.17. For each face
f ∈ F(P) its set Gen( f ) of generators is a flat in the root system Gen(Z) (by Lemma 5.5).
Hence Gen( f ) a root system too. Thus, f is a Γ -permutahedron by Theorem 5.17, and there-
fore vertex-transitive. This proves (i).

Part (ii) follows immediately from Theorem 5.3. Part (iii) follows from Theorem 5.13 (a
uniform 2-face is regular, hence vertex-transitive).

Remark 5.19. None of the points of Corollary 5.18 holds for more general polytopes:

(i) An “elongated anti-prism” (see Figure 5.6) is vertex-transitive, but most of its faces are
not vertex-transitive.

(ii) The square pyramid (half of an octahedron) is inscribed and has all edges of the same
length, but is not vertex-transitive.

(iii) If we stack the square pyramid on top of a cube, then all faces of the resulting polyhe-
dron are vertex-transitive and uniform, but the polyhedron itself is neither.

Figure 5.6. An “elongated anti-prism” and a “pyramid on top of a cube”.

5.4 The classification

The classification of the vertex-transitive and uniform zonotopes now follows from the clas-
sification of finite reflection groups resp. root systems.

We shall focus on the “irreducible” (or non-prismatic) zonotopes – those that result from ir-
reducible reflection groups. The “reducible” (or prismatic) zonotopes can be obtained as car-
tesian products of the irreducible ones. The most prominent reducible examples are probably
the prisms (from I1 ⊕ I2(n)) and hypercubes (from I1 ⊕ · · · ⊕ I1).

Uniform zonotopes

We obtain one uniform zonotope per finite reflection group. They are classically known as the
omnitruncated uniform polytopes, see [40]. Each is uniquely determined up to scale and orien-
tation. We have the following numbers per dimension:
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5.4 The classification

d # groups
2 ∞ I2(n), n≥ 2
3 3 A3

∼= D3, B3, H3
4 5 A4, B4, D4, F4, H4
5 3 A5, B5, D5
6 4 A6, B6, D6, E6
7 4 A7, B7, D7, E7
8 4 A8, B8, D8, E8

≥ 9 3 Ad , Bd , Dd

Table 5.1. Number of (irreducible) uniform zonotopes per dimension.

Some of these have special names:

• The uniform zonotopes in dimension two are the regular 2n-gons.

• The uniform zonotopes of type Ad are also known as the standard permutahedra. The
Ad -permutahedron can be obtained as the convex hull of the coordinate permutations
of the vector (1, ..., d+1) ∈ Rd+1 (the resulting polytope is contained in a d-dimensio-
nal affine subspace). The A3-permutahedron is also known as the truncated octahedron
as it can be obtained from the octahedron by cutting off its vertices (see Figure 5.3).

• The uniform zonotope of type D4 is also known as the truncated 24-cell (because it can
be obtained from the 24-cell by cutting off its vertices).

By definition, a Γ -permutahedron has |Γ | vertices. Each Γ -permutahedron is furthermore a
simple polytope (i.e., the vertex degree of the edge-graph equals d), and therefore has d|Γ |/2
edges. Consider Table 5.2 for the precise numbers.

Γ #vertices #edges
I2(n) 2n 2n
Ad (d + 1)! d(d + 1)!/2
Bd d! · 2d d! · d2d−1

Dd d! · 2d−1 d! · d2d−2

H3 120 180
F4 1,152 2,304
H4 14,400 28,800
E6 25,920 77,760
E7 2,903,040 10,160,640
E8 696,729,600 2,786,918,400

Table 5.2. Vertex and edge count for the Γ -permutahedra.
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5 Vertex-Transitive Zonotopes

Figure 5.7. Samples of B3-zonotopes and the degenerated limit case, the unique uniform
A3-zonotope (right). The middle image depicts the uniform B3-zonotope.

Vertex-transitive zonotopes

Each uniform zonotope is vertex-transitive, but the converse is not true. The zonotopes to the
reflection groups I2(2n), Bd and F4 are not uniquely determined up to scale and orientation,
but each case forms a continuous 1-dimensional family of combinatorially equivalent zono-
topes (consider the 4n-gons in Figure 5.4, or Figure 5.7 for the case B3). Table 5.1 can still
be understood as listing combinatorial types of vertex-transitive zonotopes.

The reason that these cases are different is as follows: typically, the vectors of a root system
form a single orbit under the action of the associated Weyl group, except in the cases I2(2n),
Bd and F4 in which they form two orbits [38, Section 2.11]. The common length of the vec-
tors in each orbit can then be chosen independently from each other, giving each such family
of zonotopes one degree of freedom that manifests itself in two potentially different edge
lengths.

Such degrees of freedom are also present in all reducible vertex-transitive zonotopes. For
example, the d-cubes belong to the family of d-orthotopes with d degrees of freedom.

Example 5.20. The vertices of a general Bd -permutahedron are formed by the coordinate
permutations and sign selections of some vector

(±x1, ...,±xd) ∈ Rd , with x1, ..., xd > 0. (5.1)

One can show that this results in a zonotope if and only if the x i form a linear sequence x i =
x0 + ε(i − 1) for some x0,ε > 0. The quotient ε/x0 parametrizes the 1-dimensional family,
and ε/x0 =

p
2 corresponds to the uniform representative (see Figure 5.7, the polyhedron

in the middle).

5.5 Related topics

The results of this chapter touch on several other topics that we now discuss briefly.

Characterizing root systems

Given a root system R ⊂ Rd \ {0}, it is well-known that its Weyl group Γ (R) acts transitively
on the semi-stars (also known as the sets of positive roots of R). This is also a consequence of
Proposition 5.8 and Lemma 5.10. In particular, all semi-stars of a root system are congruent.
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Our results allow to formulate a converse, resulting in a new characterization of root systems:

Theorem 5.21. If R ⊂ Rd \ {0} is finite and reduced1, then the following are equivalent:

(i) R is a root system,

(ii) all semi-stars of R are congruent.

Proof. Since R is reduced, it is the set of generator of Zon(R) and we can apply the equiva-
lence (ii)⇔ (iii) from Theorem 5.17.

Let the norm of a semi-star be the norm of the sum of its elements. It follows from Theo-
rem 5.21 that a root system has all semi-stars of the same norm. We give another criterion
by which to recognize a root system:

Theorem 5.22. Let R ⊂ Sd−1 be a finite centrally symmetric set of unit vectors. If all semi-stars
of R have the same norm, then R is a root system.

Proof. By Lemma 5.6 each vertex of Zon(R) can be written as the sum of the vectors in some
semi-star of R. The norm of that semi-star therefore equals the distance of that vertex from
the origin. Thus, if all semi-star have the same norm, Zon(R) is inscribed. Since R is centrally
symmetric and all vectors in R are of the same length, all edges of Zon(R) are of the same
length too. Thus, Zon(R) is uniform and a Γ -permutahedron by Theorem 5.3.

Since R is a centrally symmetric set of unit vectors, it is reduced. Thus, R= Gen(Zon(R)) is
the set of generators of a Γ -permutahedron and therefore a root system by Lemma 5.10.

The condition R ⊂ Sd−1 (i.e., that R is a set of unit vectors) is necessary for Theorem 5.22:
there are inscribed zonotopes with edges of distinct lengths that are not permutahedra (see
the next subsection), the generators of which have therefore all semi-stars of the same norm,
but are not root systems.

Likewise, central symmetry is necessary for Theorem 5.22: let R ⊂ R2 be the set of vertices
of a regular triangle centered at the origin. All semi-stars of R (intersections with generic half-
spaces) have the same norm, but it is clearly not a root system. Still, R∪−R is the root system
I2(3).

Question 5.23. What other non-centrally symmetric sets R ⊂ Sd−1 have all semi-stars of the
same norm? Is R∪−R always a root system?

Inscribed zonotopes

All vertex-transitive zonotopes are inscribed. However, not all inscribed zonotopes are Γ -per-
mutahedra. Examples are easiest to find in dimension two, but exist in all dimensions. An in-
scribed zonotope needs also not to be combinatorially equivalent to a Γ -permutahedron.
Examples were provided by Raman Sanyal and Sebastian Manecke (personal communica-
tion): the orthogonal projection of a Γ -permutahedron along one of its edge directions is

1The assumption “reduced” is not necessary, but then the proof becomes more cumbersome.
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5 Vertex-Transitive Zonotopes

again an inscribed zonotope, but not necessarily combinatorially equivalent to a Γ -permutahedron
(see Figure 5.8).

Figure 5.8. Three inscribed zonotopes obtained as projections of higher-dimensional Γ -
zonotopes. Left: the projection of the A4-zonotope is combinatorially equi-
valent to the A3-permutahedron, but is not vertex-transitive. Middle: a pro-
jection of the D4-zonotope. Right: a projection of the uniform F4-zonotope.
The latter two are not combinatorially equivalent to a Γ -permutahedron.

There are further known examples which cannot be obtained as such repeated projections
of Γ -permutahedra. All of them are still combinatorially equivalent to one which was ob-
tained as a projection.

Question 5.24 (by Sanyal and Manecke). Are there inscribed zonotopes which are not com-
binatorially equivalent to a Γ -permutahedron or the repeated projection of a Γ -permutahe-
dron along edge directions?

Hyperplane arrangements with congruent chambers

Zonotopes have a known relation to real hyperplane arrangements (the vertices of the zono-
tope correspond to the chambers of the hyperplane arrangement). Our results on vertex-
transitive zonotopes translate as follows: a hyperplane arrangement whose symmetry group
acts transitively on its chambers must be a reflection arrangement (the set of reflection hy-
perplanes of a finite reflection group). A more general question was asked by Caroline J.
Klivans and Ed Swartz [44, Problem 13]:

Question 5.25 (by Klivans and Swartz). If all chambers of a real hyperplane arrangement
are congruent, is it a reflection arrangement?

One finds that such an arrangement must be central and simplicial. The answer to Ques-
tion 5.25 is known to be affirmative in dimensions d ∈ {2, 3} [22], but is open in d ≥ 4.
Dualizing again, the analogous question for zonotopes is the following:

Question 5.26. If all vertices of a zonotope are locally identical (they have the identical ver-
tex-figures), is it combinatorially equivalent to a Γ -permutahedron, or more precisely, is its
normalization (see Definition 5.16) a Γ -permutahedron?
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Polytopes

For this final chapter we return to the investigation of edge-transitivity for convex polytopes.
In Section 4.3 we claimed that most edge-transitive polytopes are also vertex-transitive. We
even stated that there are no edge-transitive polytopes in dimension d ≥ 4 that are not also
vertex-transitive. In this chapter we provide the proof for this claim, which turns out to be
quite technical.

Over the course of this thesis we mentioned repeatedly that there are exactly two edge-
transitive polyhedra that are not vertex-transitive: the rhombic dodecahedron and the rhombic
triacontahedron (from left to right):

Further examples with this symmetry can be found in dimension two: for every k ≥ 2 there
exists an infinite 1-parameter family of edge-transitive 2k-gons that are not vertex-transitive:

They are characterized by alternating interior angles, which is only possible for even-sided
polygons. An odd-sided edge-transitive polygon is always vertex-transitive.

The surprising observation, and the main result of this chapter, is then that this is already
the complete list:

Theorem 6.1. If a polytope is edge- but not vertex-transitive, then it is one of the following:

(i) a non-regular 2n-gon with alternating interior angles,

(ii) the rhombic dodecahedron, or

(iii) the rhombic triacontahedron.
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In particular, every edge-transitive polytope in dimension d ≥ 4 is vertex-transitive.

A natural idea for proving Theorem 6.1 would be by induction: we try to classify the edge-
transitive polytopes that are not vertex-transitive by first classifying their potential facets,
which are hopefully of the same type of symmetry and have been classified in a previ-
ous step. Unfortunately, this approach fails as the facets do not necessarily satisfy the in-
duction hypothesis: facets of edge-transitive polytopes are not necessarily edge-transitive
(for example, the facets of the (k, k)-duoprism from Example 4.4 are k-gonal prisms, which
are not edge-transitive if k 6= 4). Likewise, if a polytope is not vertex-transitive, its facets
can still be vertex-transitive (as mentioned in Remark 5.19 (iii)).

As it turns out, we can still use this idea if we first embed the class of edge- but not vertex-
transitive polytopes in the larger class of so-called bipartite polytopes, defined by geometric
and combinatorial constraints instead of by symmetry (see Section 6.1). A core feature of a
bipartite polytope is that its faces are again bipartite.

Chapter overview

In Section 6.1 we introduce bipartite polytopes, a geometric generalization of edge-transitive
polytopes that are not vertex-transitive. We show that faces of bipartite polytopes are bipar-
tite and we explain how their classification helps in achieving the main result (Theorem 6.1).
From that point on we focus on the classification of bipartite polytopes.

Some “easy” cases are taken care of in Section 6.2, where we address dimension d = 2 as
well as inscribed bipartite polytopes (this makes use of a result from Chapter 5). We reduce
the classification of the remaining bipartite polytopes to the classification of bipartite poly-
hedra that are not inscribed (so-called strictly bipartite polyhedra).

This turns out to be the main technical part of the proof. It is presented over the course of
Sections 6.3 to 6.5. In Section 6.3 we derive first properties of the geometric and combina-
torial structure of strictly bipartite polyhedra. In Section 6.4 we introduce adjacent pairs, a
tool for systematically narrowing down the possible bipartite polytopes. This section ends
in a larger case analysis, at the end of which we are left with a final candidate polyhedron.
This polyhedron is then investigated in Section 6.5, in which it is proven to be not strictly
bipartite. It still turns out to be a remarkable near-miss.

The proof of the classification makes use of various classical geometric techniques, such as
spherical polyhedra, the classification of the rhombic isohedra and the geometric realization
of polyhedral graphs. We recall each briefly at the point of first use.

6.1 Bipartite polytopes

Let P ⊂ Rd denote a convex full-dimensional polytope.

Definition 6.2. P is called bipartite, if

(i) all its edges are of the same length `,

(ii) its edge-graph is bipartite, inducing partition F0(P) = V1 ·∪ V2 on the vertex set, and
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(iii) there are radii r1 ≤ r2 so that ‖v‖= ri for all v ∈ Vi .

If r1 < r2, then P is called strictly bipartite. A vertex v ∈ Vi is called an i-vertex. The numbers
r1, r2 and ` are called the parameters of P.

Remark 6.3. An alternative definition of bipartite polytopes would replace (iii) by the condi-
tion that P has an edge in-sphere, that is, a sphere to which each edge of P is tangent to. The
configuration depicted below (an edge of P connecting two vertices v1 ∈ V1, v2 ∈ V2) allows
an immediate computation of the radius ρ of this in-sphere by solving the given system of
equations:

ρ2 + `2
1 = r2

1
ρ2 + `2

2 = r2
2

`1 + `2 = `

This characterization will become relevant in Section 6.5. But Definition 6.2 (iii) is the
more convenient version to work with for the larger part and so we shall stick with it.

By a slight abuse of notation we call a polytope still bipartite even if it is only the translate
of a bipartite polytope. This allows us to prove that faces of P are bipartite, even if they are
not centered at the origin (cf. Proposition 6.6).

As advertised, bipartite polytopes generalize edge- but not vertex-transitive polytopes:

Proposition 6.4. If P is edge- but not vertex-transitive, then P is bipartite.

Proposition 6.4 is a geometric analogue of the well known theorem in graph theory, that
every edge- but not vertex-transitive graph is bipartite. This also served as the motivation for
the term “bipartite polytope”. A proof of the graph version can be found in [31]. Our proof
of the geometric version proceeds analogously:

Proof of Proposition 6.4. The goal is to establish parts (i), (ii) and (iii) of Definition 6.2. Part
(i) follows trivially from edge-transitivity. To prove (ii) and (iii) fix some edge e ∈ F1(P)
with end vertices v1, v2 ∈ F0(P). Let Vi denote the orbit of vi under Aut(P). We prove that
V1 ∪ V2 = F0(P), V1 ∩ V2 =∅ and that the edge-graph is bipartite inducing partition V1 ·∪ V2.

Let v ∈ F0(P) be some vertex and ẽ ∈ F1(P) an incident edge. By edge-transitivity, there is
a symmetry T ∈ Aut(P) that maps ẽ onto e, and therefore maps v onto vi for some i ∈ {1, 2}.
Thus, v is in the orbit Vi . This holds for all vertices of P, and therefore V1 ∪ V2 = F0(P).

In general, orbits of group actions are either identical or disjoint. Since V1 ∪ V2 = F0(P),
from V1 = V2 would follow V1 = F0(P), stating that P has a single orbit of vertices. But since
P is not vertex-transitive, this cannot be. Thus, V1 ∩ V2 =∅, and therefore V1 ·∪ V2 = F0(P).

Let ẽ ∈ F1(P) be an edge with end vertices ṽ1 and ṽ2. By edge-transitivity, ẽ can be mapped
onto e by some symmetry T ∈ Aut(P). Equivalently {T ṽ1, T ṽ2} = {v1, v2}. Since v1 and v2
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belong to different orbits under Aut(P), so do ṽ1 and ṽ2. Hence, ẽ has one end vertex in V1
and one end vertex in V2. This holds for all edges ẽ ∈ E and so GP is bipartite with partition
V1 ·∪ V2. This proves (ii).

Finally, it remains to determine the radii r1 ≤ r2 and prove (iii). Set ri := ‖vi‖ (assuming
w.l.o.g. that ‖v1‖ ≤ ‖v2‖). Then for every v ∈ Vi there is a symmetry T ∈ Aut(P) ⊂ O(Rd) so
that T vi = v, and thus ‖v‖= ‖T vi‖= ‖vi‖= ri .

We shall see that the bipartite polytopes are still a surprisingly small class of polytopes:

Theorem 6.5. If P is a bipartite polytope, then it is one of the following:

(i) an edge-transitive polygon,

(ii) the rhombic dodecahedron,

(iii) the rhombic triacontahedron, or

(iv) a Γ -permutahedron for some finite reflection group Γ ⊆ O(Rd) (see Definition 5.9).

Presupposing Theorem 6.5 we can proof our main result:

Proof of Theorem 6.1. If P is edge-transitive but not vertex-transitive, then it is bipartite by
Proposition 6.4 and must be one of the polytopes listed in Theorem 6.5. But it cannot be a
regular polygon or a Γ -permutahedron as those are vertex-transitive. Thus, P is one of the
remaining polytopes, all of which are edge-transitive. This matches the claim.

It then remains to prove Theorem 6.5. This is “easier” because faces of bipartite polytopes
are bipartite, as we shall prove now:

Proposition 6.6. Let f ∈ F(P) be a face of P. It holds:

(i) if P is bipartite, so is f .

(ii) if P is strictly bipartite, then so is f , and v ∈ F0( f ) ⊆ F0(P) is an i-vertex in P if and
only if it is an i-vertex in f .

(iii) if r1 ≤ r2 are the radii of P and ρ1 ≤ ρ2 are the radii of f , then

h2 +ρ2
i = r2

i ,

where h is the height of f , that is, the distance of aff( f ) from the origin.

Proof. Properties clearly inherited by f are that all edges are of the same length and that the
edge graph is bipartite. It remains to show that the radii ρ1 ≤ ρ2 exist and are distributed
compatibly with the bipartition of the edge graph of f .

Let c ∈ aff( f ) be the orthogonal projection of the origin onto aff( f ). Then h := ‖c‖ is the
height of f mentioned in (iii). For any vertex v ∈ F0( f )which is an i-vertex in P, the triangle
∆ := conv{0, c, v} has a right angle at c. Set ρi := ‖v − c‖ and observe

ρ2
i := ‖v − c‖2 = ‖v‖2 − ‖c‖2 = r2

i − h2. (6.1)
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6.2 Some easy cases

In particular, the value ρi does not depend on the choice of the vertex, but only on i. In
other words, translating f so that c becomes the origin gives a bipartite polytope according
to Definition 6.2. This proves (i), and (6.1) is equivalent to the equation in (iii). From (6.1)
also follows r1 < r2⇔ ρ1 < ρ2, which proves (ii).

Observation 6.7. Given two adjacent vertices v1, v2 ∈ F0(P) so that vi ∈ Vi . If P has param-
eters r1, r2 and `, then

`2 = ‖v1 − v2‖2 = ‖v1‖2 + ‖v2‖2 − 2〈v1, v2〉= r2
1 + r2

2 − 2r1r2 cosÝ(v1, v2),

which rearranges to

cosÝ(v1, v2) =
r2
1 + r2

2 − `
2

2r1r2
.

In particular, the angle can be computed from the parameters alone and does not depend on
the choice of the adjacent vertices. This will be of use later on.

6.2 Some easy cases

6.2.1 Bipartite polygons

The members easiest to describe (and to explicitly construct) are the bipartite polygons.
Foremost, the edge-graph is bipartite, and thus, a bipartite polygon must be a 2k-gon for

some k ≥ 2. One can show that the bipartite polygons are exactly the edge-transitive 2k-gons
(cf. Section 4.2), and that such one is strictly bipartite if and only if it is not vertex-transitive
(or equivalently, not regular).

The parameters r1, r2 and ` uniquely determine a bipartite polygon, as can be seen by
explicit construction:

One starts with an arbitrarily chosen 1-vertex v ∈ V1 placed on the circle Sr1
(0). Its neigh-

boring vertices are then uniquely determined as the intersections Sr2
(0)∩ S`(v). The proce-

dure is repeated with the new vertices until the edge cycle closes (which only happens if the
parameters are chosen appropriately).

The procedure also shows that the interior angle αi ∈ (0,π) at an i-vertex only depends
on i (and the parameters), but not on the chosen vertex v ∈ Vi . We summarize these insights
in a corollary:

Corollary 6.8. A bipartite polygon P ⊂ R2 is a 2k-gon with alternating interior angles α1,α2 ∈
(0,π) (αi being the interior angle at an i-vertex) and its shape is uniquely determined by its pa-
rameters (up to orientation).
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6 Purely Edge-Transitive Polytopes

The exact value for the interior angles is not of much importance (though they could be
obtained with Observation 6.7). However, the following will be of use:

Proposition 6.9. The interior angles α1,α2 ∈ (0,π) of a 2k-gonal bipartite polygon satisfy

α2 ≤ αk
reg ≤ α1, with αk

reg :=
�

1−
1
k

�

π, (6.2)

with equality in either part if and only if r1 = r2. Note also that αk
reg is the interior angle of a

regular 2k-gon.

Proof. The sum of interior angles of a 2k-gon is 2(k− 1)π, and thus

kα1 + kα2 = 2(k− 1)π =⇒ α1 +α2 = 2
�

1−
1
k

�

π. (6.3)

For two adjacent vertices v1, v2 ∈ F0(P) (where vi ∈ Vi), consider the triangle with vertices
0, v1 and v2, whose edge lengths are r1, r2 and `, and whose interior angles at v1 resp. v2
are α1/2 resp. α2/2. By the law of sine holds

sin(α1/2)
sin(α2/2)

=
r2

r1
,

and from r1 ≤ r2 (resp. r1 < r2) follows α1 ≥ α2 (resp. α1 > α2). Together with (6.3) we
obtain (6.2).

6.2.2 Inscribed bipartite polytopes

Because we are well-prepared (by Chapter 5), the next easiest case are the inscribed bipartite
polytopes. Those are characterized by parameter identity r1 = r2. As we shall see, such bi-
partite polytopes must be zonotopes.

Theorem 6.10. If P ⊂ Rd is an inscribed bipartite polytope, then it is a Γ -permutahedron.

Proof. By Proposition 6.6, the 2-dimensional faces of P are inscribed bipartite polygons. In
particular, they have all edges of the same length. An inscribed polygon with all edges of the
same length is regular. By Corollary 6.8 the 2-faces are regular 2k-gons, therefore centrally
symmetric.

But if all 2-faces of P are centrally symmetric, then P is a zonotope (by Definition 5.1 (iv)).
Thus, P is an inscribed zonotope with all edges of the same length, and thus a Γ -permutahe-
dron by Theorem 5.3.

Γ -permutahedra are vertex-transitive by definition and do not provide examples of edge-
transitive polytopes that are not vertex-transitive.
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6.3 Strictly bipartite polyhedra

6.2.3 Strictly bipartite polytopes for d ≥ 4

It remains to classify the strictly bipartite polytopes. This problem will be dealt with in two
steps: dimension d = 3 and dimension d ≥ 4. The detailed investigation of the case d = 3
(which turns out to be the actual hard work) will happen over the course of Sections 6.3
to 6.5, the result of which is the following theorem:

Theorem 6.11. If P ⊂ R3 is a strictly bipartite polyhedron (i.e., 3-dimensional polytope), then
P is the rhombic dodecahedron or the rhombic triacontahedron.

Presupposing Theorem 6.11, the second step is surprisingly easy and we can classify the
bipartite polytopes immediately:

Proof of Theorem 6.5. The cases d ∈ {2, 3} are dealt with in Corollary 6.8 and Theorem 6.11
respectively. It remains to show that there are no further strictly bipartite polytopes for d ≥ 4.
It suffices to show that there are no strictly bipartite polytopes in dimension d = 4 as any
higher-dimensional example has a strictly bipartite 4-face (by Proposition 6.6).

Let P ⊂ R4 be a strictly bipartite 4-polytope. Let e ∈ F1(P) be an edge of P. Then there
are s ≥ 3 cells (aka. 3-faces) f1, ..., fs ∈ F3(P) incident to e, each of which is again strictly
bipartite (by Proposition 6.6). By Theorem 6.11 each fi is a rhombic dodecahedron or rhom-
bic triacontahedron.

The dihedral angle of the rhombic dodecahedron resp. triacontahedron is 120◦ resp. 144◦

at every edge [18]. However, the dihedral angles meeting at e must sum up to less than 2π.
With the given dihedral angles, this is impossible.

The remainder of this chapter is devoted to the proof of Theorem 6.11.

6.3 Strictly bipartite polyhedra

Over the course of the next three sections we derive the classification of strictly bipartite po-
lyhedra. The goal is to show that there are only the rhombic dodecahedron and the rhombic
triacontahedron. In this section we gather general information about the geometric and
combinatorial structure of strictly bipartite polyhedra to be used in the later sections.

From this section on, let P ⊂ R3 denote a fixed strictly bipartite polyhedron with radii r1 <

r2 and edge length `. The 2-faces of P will be shortly referred to as just faces of P. Since
they are bipartite, they are necessarily 2k-gons. We will then use the following terminology:

• a face of P is of type 2k (or a 2k-face) if it is a 2k-gon.

• an edge of P is of type (2k1, 2k2) (or a (2k1, 2k2)-edge) if the two incident faces are of
type 2k1 and 2k2 respectively.

• a vertex of P is of type (2k1, ..., 2ks) (or a (2k1, ..., 2ks)-vertex) if its incident faces can
be enumerated as f1, ..., fs so that fi is a 2ki-face (note, the order of the numbers does
not matter).
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6 Purely Edge-Transitive Polytopes

We write τ(v) for the type of a vertex v ∈ F0(P).
In a given bipartite polyhedron, the type of a vertex, edge or face already determines much

of its metric properties. For faces we can prove this already now:

Proposition 6.12. For a face f ∈ F2(P), any one of the following three properties determines
the other two:

(i) its type 2k.

(ii) its interior angles α1 > α2.

(iii) its height h (that is, the distance of aff( f ) from the origin).

Proof. Fix a face f ∈ F2(P).
Suppose that the height h of f is known. By Proposition 6.6, a face of P of height h is

bipartite with radii ρ2
i := r2

i −h2 and edge length `. By Corollary 6.8, these parameters then
uniquely determine the shape of f , which includes its type and its interior angles. This shows
(iii)=⇒ (i), (ii).

Suppose now that we know the interior angles α1 > α2 of f (it actually suffices to know
one of these, say α1). Fix a 1-vertex v ∈ V1 of f and let w1, w2 ∈ V2 be its two adjacent 2-
vertices in f . Consider the simplex ∆ := conv{0, v, w1, w2}. The length of each edge of ∆
is already determined, either by the parameters alone, or by additionally using the known
interior angles. This is only non-obvious for the edge conv{w1, w2}:

‖w1 −w2‖2 = ‖w1 − v‖2 + ‖w2 − v‖2 − 2〈w1 − v, w2 − v〉

= 2`2(1− cosÝ(w1 − v, w2 − v)
︸ ︷︷ ︸

α1

).

Thus, the shape of ∆ is determined. In particular, this determines the height of the face
conv{v, w1, w2} ⊂ ∆ over the vertex 0 ∈ ∆. Since aff{v, w1, w2} = aff( f ), this determines
the height of f in P. This proves (ii)=⇒ (iii).

Finally, suppose that the type 2k is known. We want to show that the height h is uniquely
determined.1 For the sake of contradiction, suppose that the type 2k does not uniquely
determine the height of the face. Then there is another 2k-face f ′ ∈ F2(P) of some height
h′ 6= h. W.l.o.g. assume h′ < h.

Consider both faces as convex polygons embedded in R2, centered at the origin. The
vertices of a bipartite polygon are equally spaced by an angle of π/k (e.g. seen via Observa-
tion 6.7). We can therefore assume that the vertex vi of f (resp. v′i of f ′) is a positive multiple
of (cos(iπ/k), sin(iπ/k)) ∈ R2 for i ∈ {1, ..., 2k} (see the figure below). In particular, there
are factors δi ∈ R, so that v′i = δi vi .

1The reader motivated to prove this himself should know the following: it is indeed possible to write down
a polynomial in h of degree four whose coefficients involve only r1, r2, ` and cos(π/k), and whose zeroes
include all possible heights of any 2k-face of P. However, it turns out to be quite tricky to work out which
zeroes correspond to feasible solutions. For certain values of the coefficients, there are multiple positive
solutions for h, some of which correspond to non-convex 2k-faces. There seems to be no easy way to tell
them apart.
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6.3 Strictly bipartite polyhedra

The norms of the vectors v1, v2, δ1v1 and δ2v2 are the radii of the bipartite polygons f and f ′.
With Proposition 6.6 (iii) from h > h′ follows ‖v1‖ < ‖δ1v1‖ and ‖v2‖ < ‖δ2v2‖, and thus,
(∗) δ1,δ2 > 1.

Since both faces have edge length `, we have ‖v1− v2‖= ‖δ1v1−δ2v2‖= `. We are going
to derive the following contradiction:

`= ‖v1 − v2‖
(∗)
< δ1‖v1 − v2‖= ‖δ1v1 −δ1v2‖

(∗∗)
≤ ‖δ1v1 −δ2v2‖= `,

It remains to prove inequality (∗∗). This inequality is trivially satisfied if δ1 = δ2. W.l.o.g.
assume δ1 < δ2. We now provide a chain of equivalence transformations of (∗∗) (note the
use of δ1 −δ2 < 0 in the third step to reverse the inequality):

‖δ1v1 −δ1v2‖2 ≤ ‖δ1v1 −δ2v2‖2

δ2
1‖v2‖2 − 2δ2

1〈v1, v2〉 ≤ δ2
2‖v2‖2 − 2δ1δ2〈v1, v2〉

(δ2
1 −δ

2
2)‖v2‖2 ≤ 2δ1(δ1 −δ2)〈v1, v2〉

(δ1 +δ2)‖v2‖2 ≥ 2δ1〈v1, v2〉

δ̄‖v2‖2 ≥ δ1〈v1, v2〉,

where δ̄ := (δ1 + δ2)/2. Since δ̄ > δ1, it suffices to check ‖v2‖2 ≥ 〈v1, v2〉 in order to con-
clusively prove (∗∗).

Note that ‖v2‖2 ≥ 〈v1, v2〉 is equivalent to 〈v2, v2 − v1〉 ≥ 0, which is equivalent to the
statement that the angle α (see figure above) is at most 90◦. This is true since f is convex
(the interior angle is 2α≤ 180◦).

We therefore found a contradiction to the assumption that there are two non-congruent
2k-faces and this proves (i)=⇒ (ii),(iii).

Corollary 6.13. Any two faces of P of the same height, or the same type, or with the same in-
terior angles, are congruent.

As a consequence of Proposition 6.12 the notion of the interior angle αk
i ∈ (0,π) of a 2k-

face at an i-vertex is well-defined. If we define εk := (αk
1 −α

k
2)/2π, then εk > 0 by Proposi-

tion 6.9, and

αk
1 =

�

1−
1
k
+ εk

�

π, αk
2 =

�

1−
1
k
− εk

�

π.
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6 Purely Edge-Transitive Polytopes

Definition 6.14. If τ= (2k1, ..., 2ks) is the type of a vertex, then define

K(τ) :=
s
∑

i=1

1
ki

, E(τ) :=
s
∑

i=1

εki
.

Both quantities are strictly positive.

Proposition 6.15. Let v ∈ F0(P) be a vertex of type τ= (2k1, ..., 2ks).

(i) If v ∈ V1, then E(τ)< K(τ)− 1 and s = 3.

(ii) If v ∈ V2, then E(τ)> s− 2− K(τ).

Proof. Let f1, ..., fs ∈ F2(P) be the faces incident to v, so that f j is a 2k j-face. The interior
angle of f j at v is αk j

i , and the sum of these must be smaller than 2π. In formulas

2π >
s
∑

j=1

α
k j
i =

s
∑

j=1

�

1−
1
k j
± εk j

�

π= (s− K(v)± E(v))π,

where ± is the plus sign for i = 1, and the minus sign for i = 2. Rearranging for E(v) yields
(∗) ∓E(v) > s − 2− K(v). If i = 2, this gives the statement in (ii). For i = 1 note that from
k j ≥ 2 =⇒ K(v)≤ s/2 follows

s
(∗)
< −E(v) + K(v) + 2≤ 0+

s
2
+ 2 =⇒ s < 4.

The minimal degree of a vertex in a polyhedron is at least three, hence s = 3, and (∗) yields
(i).

This allows us to exclude all but a manageable list of possible types for 1-vertices. By Propo-
sition 6.15 (i) a vertex v ∈ V1 has degree three and a type of the form (2k1, 2k2, 2k3).

Corollary 6.16. For a 1-vertex v ∈ V1 of type τ holds K(τ)> 1+E(τ)> 1. One checks that this
leaves exactly the options in Table 6.1.

τ K(τ) Γ

(4,4, 4) 3/2 I1 ⊕ I1 ⊕ I1
(4,4, 6) 4/3 I1 ⊕ I2(3)
(4,4, 8) 5/4 I1 ⊕ I2(4)
(4,4, 10) 6/5 I1 ⊕ I2(5)
(4,4, 12) 7/6 I1 ⊕ I2(6)

...
...

...
(4,4, 2k) 1+ 1/k I1 ⊕ I2(k)

(4,6, 6) 7/6 A3
∼= D3

(4,6, 8) 13/12 B3
(4,6, 10) 31/30 H3

Table 6.1. Possible types of 1-vertices, their K-values and the Γ of the Γ -permutahedron
in which all vertices have this type.
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6.3 Strictly bipartite polyhedra

The types in Table 6.1 are called the possible types of 1-vertices. Each of the possible types
is realizable in the sense that there exists a bipartite polyhedron in which all 1-vertices have
this type. Examples provide the Γ -permutahedra (the Γ of that Γ -permutahedron is listed in
Table 6.1). These are not strictly bipartite though.

The convenient feature of Γ -permutahedra is that all their vertices are of the same type.
We cannot assume this for general strictly bipartite polyhedra, not even for their 1-vertices.
To determine which types of vertices can appear together in the same polyhedron, we have
to turn to spherical interior angles defined via spherical polyhedra.

A spherical polyhedron is an embedding of a planar graph into the unit sphere, so that all
edges are embedded as great circle arcs and each region (spherical face) is convex (all inte-
rior angles are less than 180◦). If 0 ∈ int(P) then we can define a spherical polyhedron PS

by applying central projection

R3 \ {0} → S2, x 7→
x
‖x‖

to all vertices and edges of P.

The vertices, edges and faces of P have spherical counterparts in PS obtained as projections
onto the unit sphere. Those will be denoted with a superscript “S”. For example, if e ∈ F1(P)
is an edge of P, then eS denotes the corresponding “spherical edge”, which is a great circle
arc obtained as the projection of e onto the sphere.

We show that the spherical polyhedron of a strictly bipartite polyhedron is well-defined:

Proposition 6.17. 0 ∈ int(P).

Proof. The proof proceeds in several steps.
Step 1: Fix a 1-vertex v ∈ V1 with neighbors w1, w2, w3 ∈ V2, and let ui := wi − v be the

direction of the edge conv{v, wi} emanating from v. Let fi j ∈ F2(P) denote the face of P that
contains v, wi and w j . The interior angle of fi j at v is thenÝ(ui , u j), which by Proposition 6.9
and k ≥ 2 satisfies

Ý(ui , u j)>
�

1−
1
k

�

π≥
π

2
=⇒ 〈ui , u j〉< 0.

Step 2: Besides v, the polyhedron P contains another 1-vertex v′ ∈ V1. It holds v′ ∈ v+
cone{u1, u2, u3}, which means that there are non-negative coefficients a1, a2, a3 ≥ 0, at least
one positive, so that v + a1u1 + a2u2 + a3u3 = v′. Rearranging and applying 〈v, ·〉 yields

a1〈v, u1〉+ a2〈v, u2〉+ a3〈v, u3〉= 〈v, v′〉 − 〈v, v〉 (6.4)

= r2
1 cosÝ(v, v′)− r2

1 < 0.
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6 Purely Edge-Transitive Polytopes

The value 〈v, ui〉 is independent of i (see Observation 6.7). Since there is at least one positive
coefficient ai , from (6.4) follows 〈v, ui〉< 0.

Step 3: By the previous steps, {v, u1, u2, u3} is a set of four vectors with pair-wise negative
inner product. The convex hull of such an arrangement in 3-dimensional Euclidean space is
known to contain the origin in its interior (a proof is given in Proposition G.1), that is, there
are positive coefficients a0, ..., a3 > 0 with a0v+ a1u1+ a2u2+ a3u3 = 0. In other words: 0 ∈
v + int(cone{u1, u2, u3}).

Step 4: If H( f ) denotes the half-space that defines the face f ∈ F2(P), then

0 ∈ v + int(cone{u1, u2, u3}) =
⋂

f∼v

int(H( f )).

Thus, 0 ∈ int(H( f )) for all faces f incident to v. But since every face is incident to a 1-vertex,
we obtain 0 ∈ int(H( f )) for all f ∈ F2(P), and thus 0 ∈ int(P) as well.

The main reason for introducing spherical polyhedra is that we can talk about the spherical
interior angles of their faces.

Let f ∈ F2(P) be a face, and v ∈ F0( f ) one of its vertices. Let α( f , v) denote the interior
angle of f at v, and β( f , v) the spherical interior angle of f S at vS . It only requires a rela-
tively straightforward computation (involving some spherical geometry) to establish a direct
relation between these angles: e.g. if v is a 1-vertex, then

sin2(`S) · (1− cosβ( f , v)) =
� `

r2

�2
· (1− cosα( f , v)),

where `S denotes the arc-length of an edge of PS (indeed, all edges are of the same length).
An equivalent formula exists for 2-vertices. The details of the computation and the actual
relation are not of importance and can be found in Appendix G.2. The core message is that
the value of α( f , v) uniquely determines the value of β( f , v) and vice versa. Since the value
of α( f , v) = αk

i only depends on the type of the face and the partition class of the vertex,
the same then holds for β( f , v). Therefore, the notion β k

i for the spherical interior angle of
a 2k-gonal spherical face of PS at (the projection of) an i-vertex is well-defined. We have

β
k1
i = β

k2
i ⇐⇒ α

k1
i = α

k2
i

6.12
⇐⇒ k1 = k2, (6.5)

where we use Proposition 6.12 in the right-most equivalence.

Observation 6.18. The spherical interior angles β k
i have the following properties:

(i) The spherical interior angles surrounding a vertex add up to exactly 2π. That is, for
an i-vertex v ∈ F0(P) of type (2k1, ..., 2ks) holds

β
k1
i + · · ·+ β

ks
i = 2π.

(ii) The sum of interior angles of a spherical polygon exceeds the interior angle sum of a
respective flat polygon. That is,

kβ k
1 + kβ k

2 > 2(k− 1)π =⇒ β k
1 + β

k
2 > 2

�

1−
1
k

�

π.
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These simple observations have several relevant consequences for the structure of a strictly
bipartite polyhedron P:

Corollary 6.19. P contains at most two different types of 1-vertices, and if there are two dif-
ferent types, then one is of the form (4, 4,2k) and the other one is of the form (4,6, 2k′) for
distinct k 6= k′ and 2k′ ∈ {6,8, 10}.

Proof. Each possible type listed in Table 6.1 is either of the form (4, 4,2k) or of the form
(4,6, 2k′) for some 2k ≥ 4 resp. 2k′ ∈ {6,8, 10}.

If P contains simultaneously 1-vertices of type (4,4, 2k1) and (4,4, 2k2), apply Observa-
tion 6.18 (i) to see

β2
1 + β

2
1 + β

k1
1
(i)
= β2

1 + β
2
1 + β

k2
1 =⇒ β

k1
1 = β

k2
1

(6.5)
=⇒ k1 = k2.

If P contains simultaneously 1-vertices of type (4, 6,2k′1) and (4, 6,2k′2), then

β2
1 + β

3
1 + β

k′1
1
(i)
= β2

1 + β
3
1 + β

k′2
1 =⇒ β

k′1
1 = β

k′2
1

(6.5)
=⇒ k′1 = k′2.

Finally, if P contains simultaneously 1-vertices of type (4,4, 2k) and (4, 6,2k′), then

β2
1 + β

2
1 + β

k
1
(i)
= β2

1 + β
3
1 + β

k′
1 =⇒ β k

1 − β
k′
1 = β

3
1 − β

2
1

︸ ︷︷ ︸

6= 0 by (6.5)

(6.5)
=⇒ k 6= k′.

Since each edge of P is incident to a 1-vertex, we obtain the following:

Corollary 6.20. If P has only 1-vertices of types (4,4, 2k) and (4,6, 2k′) then each edge of P is
of one of the types

(4,4), (4,2k)
︸ ︷︷ ︸

from a (4, 4,2k)-vertex

, (4,6), (4,2k′) or (6,2k′)
︸ ︷︷ ︸

from a (4, 6,2k′)-vertex

.

Corollary 6.21. The dihedral angle of an edge e ∈ F1(P) of P only depends on its type.

Proof. Suppose that e is a (2k1, 2k2)-edge. Then e is incident to a 1-vertex v ∈ V1 of type
(2k1, 2k2, 2k3). By Observation 6.18 (i) holds β k3

1 = 2π−β k1
1 −β

k2
1 , which further determines

k3. By Proposition 6.12 we have uniquely determined interior angles αk1
1 ,αk2

1 and αk3
1 .

It is known that for a simple vertex (that is, a vertex of degree three) the interior angles of
the incident faces already determine the dihedral angles at the incident edges (a proof can
be found in Proposition G.2). Consequently, the dihedral angle at e is determined.

The next result shows that Γ -permutahedra are the only bipartite polyhedra in which all
vertices can have the same type.

Corollary 6.22. P cannot contain a 1-vertex and a 2-vertex of the same type.
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6 Purely Edge-Transitive Polytopes

Proof. Let v ∈ F0(P) be some vertex of type (2k1, 2k2, 2k3). The incident edges are of type
(2k1, 2k2), (2k2, 2k3) and (2k3, 2k1) respectively. By Corollary 6.21 the dihedral angles of
these edges are uniquely determined, and since v is a simple vertex, the interior angles of its
incident faces are also uniquely determined (see Proposition G.2). In particular, we obtain
the same angles independent of whether v is a 1-vertex or a 2-vertex.

Suppose now that vi ∈ Vi , i ∈ {1,2} are vertices of the same type τ. Since 1-vertices are
always simple, the 2-vertex must be simple too, and their incident faces share the same inte-
rior angles. That is, αk

1 = α
k
2 for each 2k ∈ τ. But this is not possible if P is strictly bipartite

(using Proposition 6.6 (ii) and Proposition 6.9).

6.4 Adjacent pairs

In this section we prepare and perform a larger case analysis, at the end of which we will be
left with the description for a single remaining candidate polyhedron that has to be refuted.
We achieve this by showing that almost all types of 1-vertices lead to contradictions. Our
main tool will be so-called adjacent pairs.

Definition 6.23. Given a 1-vertex v ∈ V1 of type τ1 = (2k1, 2k2, 2k3), for any two distinct i,
j ∈ {1,2, 3}, v has a neighbor w ∈ V2 of type τ2 = (2ki , 2k j ,∗, ...,∗), where ∗ are placeholders
for unknown entries. The pair of types

(τ1,τ2) = ((2k1, 2k2, 2k3), (2ki , 2k j ,∗, ...,∗))

is called an adjacent pair of P.

We proceed proving that most adjacent pairs cannot occur in P. Excluding enough adjacent
pairs for fixed τ1 then proves that the type τ1 cannot occur as the type of a 1-vertex.

Our main tools for achieving this will be the inequalities established in Proposition 6.15
(i) and (ii), that is,

E(τ1)
(i)
< K(τ1)− 1 and E(τ2)

(ii)
> s− 2− K(τ2),

where s is the number of elements in τ2. For a warmup, and as a template for further calcu-
lations, we prove that the adjacent pair (τ1,τ2) = ((4, 6,8), (6, 8,8)) cannot occur in P.

Example 6.24. By Proposition 6.15 (i) we have

ε2 + ε3 + ε4 = E(τ1)
(i)
< K(τ1)− 1=

1
2
+

1
3
+

1
4
− 1=

1
12

. (6.6)

On the other hand, by Proposition 6.15 (ii) we have

2
12
= 3− 2−

�1
3
+

1
4
+

1
4

�

= s− 2− K(τ2)
(ii)
< E(τ2) = ε3 + ε4

︸ ︷︷ ︸

<1/12

+ ε4
︸︷︷︸

<1/12

<
2

12
, (6.7)

which is a contradiction. Hence this adjacent pair cannot occur. Note that we used (6.6) to
upperbound certain sums of εi in (6.7).
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6.4 Adjacent pairs

An adjacent pair excluded by using the inequalities from Proposition 6.15 as demonstra-
ted in Example 6.24 will be called infeasible.

The argument applied in Example 6.24 will be repeated many times for many different
adjacent pairs in the upcoming case analysis, and we shall therefore use a tabular form to
abbreviate it. After fixing τ1 = (4, 6,8), the argument to refute the adjacent pair (τ1,τ2) =
((4,6, 8), (6, 8,8)) will be abbreviated as shown in the first row of the following table:

τ2 s− 2− K(τ2)
?
< E(τ2)

(6,8, 8) 2/12 6< (ε3 + ε4) + ε4 < 2/12
(6,8, 6,6) 9/12 6< (ε3 + ε4) + ε3 + ε3 < 3/12

The second row displays the analogue argument for another adjacent pair, namely, the pair
((4,6, 8), (6, 8,6, 6)), showing that it is infeasible as well. Both rows will reappear in later
tables when we exclude τ1 = (4, 6,8) entirely. Note that the terms in the column E(τ2) are
grouped by parenthesis to indicate which subsums are upper bounded via Proposition 6.15
(i). In this example, if there are n groups, then the sum is upper bounded by n/12.

The placeholders in an adjacent pair ((2k1, 2k2, 2k3), (2ki , 2k j ,∗, ...,∗)) can, in theory, be
replaced by an arbitrary sequence of even numbers, and each such pair has to be refuted
separately. The following proposition makes this task more tractable. We write τ ⊂ τ′ if τ
is a subtype of τ′, that is, a vertex type that can be obtained from τ′ by removing some of its
entries.

Proposition 6.25. If (τ1,τ2) is an infeasible adjacent pair, then so is (τ1,τ′2) for every τ′2 ⊃ τ2.

Proof. Suppose τ2 = (2k1, ..., 2ks), τ′2 = (2k1, ..., 2ks, 2ks+1, ..., 2ks′) ⊃ τ2, and that the pair
(τ1,τ′2) is not infeasible. Then τ′2 satisfies Proposition 6.15 (ii):

E(τ′2)> s′ − 2− K(τ′2)

=⇒ E(τ2)> s− 2− K(τ2) +
s′
∑

i=s+1

α
ki
2 /π>0

︷ ︸︸ ︷

�

1−
1
ki
− εki

�

> s− 2− K(τ2).

But this is exactly the statement that τ2 satisfies Proposition 6.15 (ii), i.e., the pair (τ1,τ2)
is also not infeasible.

By Proposition 6.25 it is sufficient to exclude so-called minimal infeasible adjacent pairs,
that is, infeasible adjacent pairs (τ1,τ2) for which (τ1,τ′2) is not infeasible for any τ′2 ⊂ τ2.

A second potential problem is that we know little about the values that might replace the
placeholders in τ2 = (2ki , 2k j ,∗, ...,∗). For our immediate goal, dealing with the following
special case is sufficient:

Proposition 6.26. The placeholders in an adjacent pair ((4, 6,2k′), (6, 2k′,∗, ...,∗)) can only
contain 4, 6 and 2k′.

Proof. Suppose that P contains an adjacent pair

(τ1,τ2) = ((4, 6,2k′), (6, 2k′, 2k,∗, ...,∗))
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6 Purely Edge-Transitive Polytopes

induced by a 1-vertex v ∈ V1 of type τ1 with neighbor w ∈ V2 of type τ2. Suppose further, that
2k 6∈ {4,6, 2k′}. The vertex w is then incident to a 2k-face, and therefore also to a 1-vertex
u ∈ V1 of type (4,4, 2k) (u cannot be of type (4, 6,2k) because of k 6= k′ and Corollary 6.19).
This configuration is depicted below:

Note that w is also incident to a 4-face, and thus (6, 2k′, 2k, 4) ⊆ τ2.
By Proposition 6.15 (i) the existence of 1-vertices of type (4,4, 2k) and (4,6, 2k′) yields

inequalities

ε2 + ε2 + εk <
1
k

and ε2 + ε3 + εk′ <
1
k′
−

1
6

. (6.8)

Since τ2 has τ := (6,2k′, 2k, 4) as a subtype, by Proposition 6.25 it suffices to show that the
pair ((4,6, 2k′), (6, 2k′, 2k, 4)) is infeasible. This follows via Proposition 6.15 (ii):

7
6
−

1
k
−

1
k′
= 4− 2−

�1
3
+

1
k′
+

1
k
+

1
2

�

= 4− 2− K(τ)

(ii)
< E(τ) = ε2 + ε3 + εk′

︸ ︷︷ ︸

<1/k′−1/6

+ εk
︸︷︷︸

<1/k

(6.8)
<

1
k
+

1
k′
−

1
6

,

which rearranges to 1/k + 1/k′ > 2/3. Recalling 2k′ ∈ {6, 8,10} =⇒ k′ ≥ 3 (from Corol-
lary 6.19) and 2k 6∈ {4, 6,2k′} =⇒ k ≥ 4 shows that this is not possible.

6.4.1 The case τ1 = (4,6, 10)

If P contains a 1-vertex of type (4,6, 10), then it contains an adjacent pair of the form

(τ1,τ2) = ((4,6, 10), (6,10,∗, ...,∗)).

We proceed as demonstrated in Example 6.24. Proposition 6.15 (i) yields ε2+ε3+ε5 < 1/30.
By Proposition 6.26 the placeholders can only take on values 4, 6 or 10. The following table
lists the minimally infeasible adjacent pairs and proves their infeasibility.

τ2 s− 2− K(τ2)
?
< E(τ2)

(6, 10,6) 4/30 6< (ε3 + ε5) + ε3 < 2/30
(6, 10,10) 8/30 6< (ε3 + ε5) + ε5 < 2/30
(6, 10,4,4) 14/30 6< (ε2 + ε3 + ε5) + ε2 < 2/30

By Proposition 6.25 we conclude: the placeholders in τ2 = (6,10,∗, ...,∗) can contain no 6
or 10, and at most one 4. This leaves us with the option τ2 = (4, 6,10) = τ1 which is not
possible by Corollary 6.22. Therefore, P cannot contain a 1-vertex of type (4,6, 10).
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6.4 Adjacent pairs

6.4.2 The case τ1 = (4,6, 8)

If P contains a 1-vertex of type (4,6, 8), then it also contains an adjacent pair of the form

(τ1,τ2) = ((4, 6,8), (6,8,∗, ...,∗)).

We proceed as demonstrated in Example 6.24. Proposition 6.15 (i) yields ε2+ε3+ε4 < 1/12.
By Proposition 6.26 the placeholders can only take on values 4, 6 or 8. The following table
lists the minimally infeasible adjacent pairs and proves their infeasibility.

τ2 s− 2− K(τ2)
?
< E(τ2)

(6, 8,8) 2/12 6< (ε3 + ε4) + ε3 < 2/12
(6, 8,4, 4) 5/12 6< (ε2 + ε3 + ε4) + ε2 < 2/12
(6, 8,4, 6) 7/12 6< (ε2 + ε3 + ε4) + ε3 < 2/12
(6, 8,6, 6) 9/12 6< (ε2 + ε3 + ε4) + ε3 + ε3 < 3/12

By Proposition 6.25 we conclude: the placeholders in τ2 = (6,8,∗, ...,∗) can contain no 8,
and at most one 4 or 6, but not both at the same time.

This leaves us with the options τ2 = (4,6, 8) and τ2 = (6, 6,8). In the first case, τ1 = τ2
which is not possible by Corollary 6.22. In the second case, there would be two adjacent
6-faces, but P does not contain (6,6)-edges by Corollary 6.20 with 2k′ = 8. Therefore, P
cannot contain a 1-vertex of type (4, 6,8).

6.4.3 The case τ1 = (4,6, 6)

If P contains a 1-vertex of type (4,6, 6), then it also contains an adjacent pair of the form

(τ1,τ2) = ((4, 6,6), (6,6,∗, ...,∗)).

We proceed as demonstrated in Example 6.24. Proposition 6.15 (i) yields ε2+ε3+ε3 < 1/6.
By Proposition 6.26 the placeholders can only take on values 4 or 6. The following table lists
the minimally infeasible adjacent pairs and proves their infeasibility.

τ2 s− 2− K(τ2)
?
< E(τ2)

(6,6, 4,4) 2/6 6< (ε2 + ε3 + ε3) + ε2 < 2/6
(6,6, 6,4) 3/6 6< (ε2 + ε3 + ε3) + ε3 < 2/6
(6,6, 6,6) 4/6 6< (ε3 + ε3) + (ε3 + ε3) < 2/6

By Proposition 6.25 we conclude: the placeholders in τ2 = (6, 6,∗, ...,∗) can contain at most
one 4 or 6, but not both at the same time.

This leaves us with the options τ2 = (4,6, 6) and τ2 = (6, 6,6). In the first case we have
τ1 = τ2, which is not possible by Corollary 6.22.

Excluding τ2 = (6,6, 6) needs more work: fix a 6-face f ∈ F2(P). Each edge of f is either
of type (4, 6) or of type (6, 6) (by Corollary 6.20). Each 1-vertex of f is incident to exactly
one of the (6,6)-edges of f (since its type is (4,6, 6)). Each 2-vertex of f is incident to either
exactly zero or exactly two (6,6)-edges of f (since if there is one (6,6)-edge, then its type
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6 Purely Edge-Transitive Polytopes

must be of type (6,6, 6)). Such a configuration of edge types around a 6-gon is not possible:
the conditions from the 1-vertices imply that there are exactly three (6,6)-edges around f ,
but the conditions from the 2-vertices imply that the number of (6,6)-edges is even (see also
Figure 6.1).

Figure 6.1. Possible distributions of (4, 6)-edges (black) and (6,6)-edges (gray) around
a 6-face as discussed in Section 6.4.3. The top row shows configurations
compatible with the conditions imposed by the 1-vertices (black), and the
bottom row shows the configurations compatible with the conditions im-
posed by the 2-vertices (white).

Therefore, P cannot contain a 1-vertex of type (4, 6,6).

Observation 6.27. It is a consequence of Sections 6.4.1 to 6.4.3 that P cannot contain a 1-
vertex of a type (4, 6,2k′) for a 2k′ ∈ {6,8, 10}. By Corollary 6.19 this means that all 1-ver-
tices of P are of the same type τ1 = (4,4, 2k) for some fixed 2k ≥ 4.

We distinguish the case (4, 4,4) from the cases (4, 4,2k) with 2k ≥ 6.

6.4.4 The case τ1 = (4,4, 4)

In this case, all 2-faces are 4-gons, and all 4-gons are congruent by Proposition 6.12. A 4-gon
with all edges of the same length is known as a rhombus, and the polyhedra with congruent
rhombic faces are known as rhombic isohedra (from german Rhombenisoeder). These have a
known classification:

Theorem 6.28 (Bilinski [4]). If P is a polyhedron with congruent rhombic faces, then P is one of
the following (cf. Figure 6.2):

(i) a member of the infinite family of rhombic hexahedra, i.e., P can be obtained from a cube
by stretching or squeezing it along a long diagonal,

(ii) the rhombic dodecahedron,

(iii) the Bilinski dodecahedron,

(iv) the rhombic icosahedron, or

(v) the rhombic triacontahedron.

Corollary 6.29. If P is strictly bipartite with all 1-vertices of type (4,4, 4), then P is one of the
following:
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6.4 Adjacent pairs

Figure 6.2. From top to bottom, from left to right: two versions of the “stretched cube”
(rhombic hexahedron), the rhombic dodecahedron, the Bilinski dodecahe-
dron, the rhombic icosahedron, and the rhombic triacontahedron.

(i) the rhombic dodecahedron,

(ii) the rhombic triacontahedron.

Proof. The polytopes (i) and (ii) are edge-transitive but not vertex-transitive, and they are not
inscribed. By Proposition 6.4 they are therefore strictly bipartite.

It remains to exclude the other polyhedra listed in Theorem 6.28. The rhombic hexahedra
include the cube, which is inscribed, hence not strictly bipartite. The other polyhedra are
not inscribed, and so Proposition 6.9 with 2k = 4 yields

α2 < π/2< α1.

That is, the interior angles at 1-vertices are obtuse, while the interior angles at 2-vertices are
acute. Visual inspection of the remaining polyhedra (see Figure 6.2) shows that each has a
vertex in which acute and obtuse angles meet. These vertices can neither be assigned to V1
nor to V2, and the polyhedron cannot be bipartite.

Since we expect that the polyhedra listed in Corollary 6.29 are the only two strictly bipar-
tite polyhedra, the goal of the remaining sections is to show that all other possible configu-
rations must lead to a contradiction.

6.4.5 The case τ1 = (4,4, 2k), 2k ≥ 6

If P contains a 1-vertex of type (4, 4,2k) with 2k ≥ 6, then it also has an adjacent pair of the
form

(τ1,τ2) = ((4,4, 2k), (4,2k,∗, ...,∗)).

We proceed as demonstrated in Example 6.24. Proposition 6.15 (i) yields ε2+ε2+εk < 1/k.
Since (4,4, 2k) is the only type of 1-vertex of P, there are only 4-faces and 2k-faces and the
placeholders can only take on the values 4 and 2k (note that we do not use Proposition 6.26).
The following table lists some inequalities derived for infeasible pairs:
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τ2 s− 2− K(τ2)
?
< E(τ2)

(4,2k, 4, 4, 4) 1− 1/k < (ε2 + ε2 + εk) + (ε2 + ε2) < 2/k
(4, 2k, 4, 4, 2k) 3/2− 2/k < (ε2 + ε2 + εk) + (ε2 + εk) < 2/k

One checks that these inequalities are not satisfied for 2k ≥ 6. Proposition 6.25 then states
that the placeholders can contain at most two 4-s, and if exactly two, then nothing else.
Moreover, τ2 must contain at least as many 4-s as it contains 2k-s, as otherwise we would
find two adjacent 2k-faces while P cannot contain a (2k, 2k)-edge by Corollary 6.20. We are
therefore left with the following options for τ2:

(4,4, 2k), (4,4, 4,2k) and (4, 2k, 4, 2k).

The case τ2 = (4, 4,2k) is impossible by Corollary 6.22. We show that τ2 = (4, 4,4, 2k) is
also not possible: consider the local neighborhood of a (4, 4,4, 2k)-vertex (the highlighted ver-
tex):

Since the 1-vertices (black dots) are of type (4,4, 6), this configuration forces on us the exis-
tence of the two gray 6-faces. These two faces intersect in a 2-vertex, which is then incident
to two 2k-faces and must be of type (4,2k, 4, 2k). But we can show that the types (4, 4,4, 2k)
and (4, 2k, 4, 2k) are incompatible by Observation 6.18 (i):

β2
2 + β

2
2 + β

2
2 + β

k
2
(i)
= β2

2 + β
k
2 + β

2
2 + β

k
2 =⇒ β2

2 = β
k
2

(6.5)
=⇒ 4= 2k ≥ 6.

Thus, (4, 4,4, 2k) cannot occur.
We conclude that every 2-vertex incident to a 2k-face must be of type (4, 2k, 4, 2k). Con-

sider then the following table:

τ2 s− 2− K(τ2)
?
< E(τ2)

(4,2k, 4, 2k) 1− 2/k < (ε2 + ε2 + εk) + ε2 < 2/k

The established inequality yields 2k ≤ 6, and hence 2k = 6. We found that then all 1-vertices
must be of type (4, 4,6), and all 2-vertices incident to a 6-face must be of type (4,6, 4,6).
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6.4.6 The case τ1 = (4,4, 6)

At this point we can now assume that all 1-vertices of P are of type (4,4, 6) and that each
2-vertex of P that is incident to a 6-face is of type (4, 6,4, 6). In particular, P contains a
2-vertex w ∈ V2 of this type. Since there is no (6,6)-edge in P, the two 6-faces incident to w
cannot be adjacent. In other words, the faces around w must occur alternatingly of type 4
and type 6, which is the reason for writing the type (4, 6,4, 6) with alternating entries.

On the other hand, P contains (4,4)-edges, and none of these is incident to a (4, 6,4, 6)-
vertex surrounded by alternating faces. Thus, there must be further 2-vertices of a type other
than (4,6, 4,6), necessarily not incident to any 6-face. These must then be of type

(4r) := (4, ..., 4
︸ ︷︷ ︸

r

), for some r ≥ 3.

Proposition 6.30. r = 5.

Proof. If there is a (4r)-vertex, Observation 6.18 (i) yields β2
2 = 2π/r. Analogously, from the

existence of a (4, 6,4,6)-vertex follows

2β2
2 + 2β3

2
(i)
= 2π =⇒ β3

2 =
2π− 2β2

2

2
=
�

1−
2
r

�

π.

Recall kβ k
1 + kβ k

2 > 2π(k−1) from Observation 6.18 (ii). Together with the previously esta-
blished values for β2

2 and β3
2 , this yields

β2
1 >

2π(2− 1)− 2β2
2

2
=
�

1−
2
r

�

π and β3
1 >

2π(3− 1)− 3β3
2

3
=
�1

3
+

2
r

�

π. (6.9)

Since the 1-vertices are of type (4,4, 6), Observation 6.18 (i) yields

2π
(i)
= 2β2

1 + β
3
1

(6.9)
> 2

�

1−
2
r

�

π+
�1

3
+

2
r

�

π=
�7

3
−

2
r

�

π.

And one checks that this rearranges to r < 6.
This leaves us with the options r ∈ {3, 4,5}. If r = 4, then β3

2 = π/2= β
2
2 , which is impos-

sible by equation (6.5). And if r = 3, then (6.9) yields β3
1 > π, which is also impossible for

a convex face of a spherical polyhedron. We are left with r = 5.

6.5 An almost strictly bipartite polyhedron

It turns out that the restrictions obtained so far leave us with a unique candidate polyhedron
left to be investigated. It is the purpose of this section to prove that this polyhedron is not
strictly bipartite. Instead it will turns out to be a remarkable near-miss.

To summarize, we found that P is strictly bipartite with all 1-vertices of type (4, 4,6) and
all 2-vertices of types (4,6, 4,6) or (45), and both types actually occur. This information uni-
quely determines the edge-graph of P, which is shown in Figure 6.3.
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Figure 6.3. The edge-graph of the final candidate polyhedron.

This graph can be constructed by starting from a hexagon in the center with vertices of al-
ternating colors (indicating the partition classes). One then successively adds further faces
(according to the structural properties determined above), layer by layer. This process in-
volves no choice and thus the result is unique.

As mentioned in Remark 6.3, a bipartite polyhedron has an edge in-sphere. Thus, P is a po-
lyhedral realization of the graph in Figure 6.3 with an edge in-sphere. It is known that any
two such realizations are related by a projective transformation [65]. One representative
from this class (which we dot not yet know to coincide with P) can be constructed by applying
the following operation ? to each vertex of the regular icosahedron:

The operation is performed so that one vertex of each new 4-gon is positioned in the center of
an edge of the icosahedron, and so that its edges are tangent to a common sphere centered at
the origin (assuming that the icosahedron is centered at the origin). This results in the poly-
hedron shown in Figure 6.4.

Figure 6.4. The final candidate polyhedron.
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One can check, that this polyhedron has indeed the edge-graph depicted in Figure 6.3.
Evidently, all 4-gonal faces of this polyhedron are mutually congruent, and so are the 6-

gonal faces (as we would expect for a bipartite polyhedron). Since P has an edge in-sphere
and the same edge-graph as this “modified icosahedron”, it must be a projective transforma-
tion thereof. However, any projective transformation, that is not just a re-orientation or a
uniform rescaling will inevitably destroy the property of congruent faces. In conclusion, P
must be the polyhedron in Figure 6.4.

By construction, P has a bipartite edge-graph and an edge in-sphere. Moreover, Figure 6.4
gives the impression that P has all edges of the same length and should therefore be bipartite.
However, we shall see that the edges must have tiny differences in their lengths that cannot
be spotted by visual inspection. The author thanks Frank Göring who provided the argument
that is presented in the remainder of this section.

We proceed by contradiction: we assume that P has all edges of the same length and show
that its 2-vertices v ∈ V2 must have different values for ‖v‖ depending on their type. That
is, we cannot choose a consistent value for r2 and P cannot be bipartite.

Consider the following well-known construction of the regular icosahedron from the cube
of edge-length 2 (centered at the origin):

In words: insert a line segment in the center of each face of the cube as shown in the image.
Each line segment is of length 2φ, where φ ≈ 0.61803 is the positive solution of φ2 = 1−φ
(one of the numbers commonly knows as the golden ratio). The convex hull of these line
segments results in a regular icosahedron with edge length 2φ.

It is now sufficient to consider a single vertex of the icosahedron together with its incident
faces. The image below shows this vertex after we applied the operation ?.
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The image on the right is the orthogonal projection of the configuration on the left onto the
yz-plane. In this projection we can give explicit 2D-coordinates to several important points:

The points A and C are 2-vertices of P of type (45) and (4, 6,4, 6) respectively. Both points
and the origin O are contained in the yz-plane onto which we projected, and so the distances
between these points are preserved during the projection. Assuming that P is bipartite, we
would expect to find |OA| = |OC| = r2. We shall see that this is not the case, by explicitly
computing the coordinates of A and C in the new coordinate system (y, z).

By construction, C= (0, 1) and |OC|= 1. Other points with easily determined coordinates
are P, Q, R, S, T (the midpoint of R and S) and U (the midpoint of Q and S).

By construction, the point B lies on the line segment QT. The parallel projection of a rhom-
bus is a (potentially degenerated) parallelogram, and thus, opposite edges in the projection
are still parallel. Hence, the gray edges in the figure are parallel. For that reason, the seg-
ment UB is parallel to PQ. This information suffices to determine the coordinates of B,
which is now the intersection of QT with the parallel of PQ through U. The coordinates of
the intersection are given in the figure.

The rhombus containing the vertices A, B and C degenerated to a line. Its fourth vertex is
also located at B. Therefore, the segments CB and BA are translates of each other. Since the
point B and the segment CB are known, this allows the computation of the coordinates of A
as given in the figure.

We can finally compute |OA|. For this, recall (∗)φ2 = 1−φ, or more generally (∗∗)φ2n =
F2n−2−φF2n−1, where Fn denotes the n-th Fibonacci number with initial conditions F0 = F1 =
1. Then

|OA|2 = (4φ − 3)2 + (1− 3φ)2

= 25φ2 − 30φ + 10
(∗)
= 25(1−φ)− 30φ + 10

= 35− 55φ

= 1+ (34− 55φ)
(∗∗)
= 1+φ10 > 1,
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6.5 An almost strictly bipartite polyhedron

and thus, P cannot be bipartite. Remarkably, we find that

|OA|=
Æ

1+φ10 ≈ 1.00405707

is only about 0.4% larger than |OC| = 1. This explains why the polyhedron in Figure 6.4
cannot be visually distinguished from a bipartite polyhedron. And so, while P is not bipartite,
it is a remarkable near-miss.

This finalizes the proof of Theorem 6.11 and establishes the main results of this chapter.
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Conclusions and Outlook

This thesis explored two large topics: first, the interplay between symmetry and spectrum for
polytopes and graph realizations, and second, transitivity phenomena in convex polytopes.

The common theme over the first part was our search for an appropriate formalization of
“sufficient symmetry” in order to answer Question 3 resp. Question 6: is every “sufficiently
symmetric” graph realization resp. polytope automatically spectral?

The machinery for formalizing and answering these questions has been developed in stages.
We first investigated point arrangements via the so-called arrangement space, which we sub-
sequently linked to concepts like symmetry (cf. Question 8) and rigidity (cf. Question 7).
We then considered graph realizations and found that in this case distance-transitivity is
a sufficient symmetry (Theorem 2.34). For polytopes we found that combined vertex- and
edge-transitivity is sufficient (Corollary 3.15). In fact, every polytope that is both vertex- and
edge-transitive turned out to be θ2-spectral, which answered Question 4 in the affirmative.
Besides this special case, Question 1 and Question 2 are still widely open, but the Theorem
of Izmestiev (Theorem 3.13) points towards the right tools for attacking these problems.

In the second part we took a closer look at edge-transitive polytopes. We explored their
properties via the previously established spectral techniques (Theorem 4.5), introduced a hi-
erarchical classification scheme for approaching Question 5 and classified several sub-classes,
such as the distance-transitive polytopes (Theorem 4.18) and the edge-transitive polytopes
that are not vertex-transitive (Theorem 6.1). In preparation for these results we obtained a
classification of the vertex-transitive zonotopes (Theorem 5.2) and the uniform zonotopes
(Theorem 5.3).

Among the many new and old open questions that we have addressed in this thesis, we
want to close with the following two, which best reflect the progress that we made:

Question 9. Are spectral polytopes characterized by Theorem 3.14?

Question 10. Are all edge-transitive polytopes in dimension d ≥ 4 Wythoffian with transitive
Coxeter-Dynkin diagrams (cf. Conjecture 4.11)?

Outlook

One of our declared goals was to demonstrate the usefulness of the techniques from spec-
tral graph theory in polytope theory. We believe to have only scratched the surface of this
connection. Below we describe two further potential applications.

In a third section we briefly address the many open questions we face in the context of
transitivity phenomena in convex and non-convex polytopes.
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Conclusions and Outlook

Graph colorings and polytope symmetries

Every symmetry of a polytope induces a symmetry of its edge-graph, that is,

Aut(P) “⊆” Aut(GP).

The converse is not always true. But one might suggest to enrich the edge-graph GP , e.g. by
coloring vertices and/or edges, so that the two symmetry groups become isomorphic. Is this
possible?

Figure 2. Three 4-gons with a respective coloring of the edge-graph, so that Aut(P) ∼=
Aut(G∗P). It can be necessary to color vertices and edges.

The Theorem of Izmestiev can provide such a coloring: if each edge i j ∈ E of GP is col-
ored with X i j (where X is the Izmestiev matrix) and each vertex i ∈ V is colored with X ii ,
then one can show that the resulting colored edge-graph G∗P has Aut(G∗P)

∼= AutGL(P) (where
AutGL(P) ⊆ GL(Rd) is the linear symmetry group of P rather than the Euclidean symmetry
group). This is surprising, since there is no a priori reason to believe that the linear sym-
metries of a polytope can be captured combinatorially by the edge-graph (there are graph
realizations whose full symmetry cannot be captured in this way).

Question 11. Can we extend this to a coloring G∗∗P so that Aut(G∗∗P )
∼= Aut(P) (the Euclidean

symmetry group)? How about projective symmetries?

Question 12. Do we need to color both vertices and edges if we restrict to dimension d ≥ 3?
That this is necessary in dimension two can be seen in Figure 2.

Many polytopes are eigenpolytopes

We have seen that most polytopes are not spectral. In contrast, many naturally occurring
polytopes can be represented as eigenpolytopes.

For example, consider the graph G = (V, E) with V = {permutations of (0, ..., n)}, where
two such permutations are adjacent in G if and only if they differ in a transposition of two
neighboring entries, e.g.

(0,1, 2,3, 4) is adjacent to (0,1, 3,2, 4).

This graph is also known as the Bruhat graph or the edge-graph of the n-dimensional permtu-
ahedron. In fact, its θ2-eigenpolytope is a (non-uniform) realization of the permutahedron.
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Things change if we add further edges between any two permutations that are related by
a transposition of the “outer entries”, e.g.

(0,1, 2,3, 4) is adjacent to (4, 1,2, 3,0).

This graph is now arc-transitive and numerical experiments (up to n = 7) suggest that the
traveling salesman polytope is one of its eigenpolytopes (but it is not the θ2-eigenpolytope).

Other experiments suggest that the Birkhoff polytope can be reproduced in a similar fash-
ion.

Question 13. What other practically relevant polytopes can be represented as eigenpoly-
topes? What is the practical relevance of such a representation?

Question 14. Can the representation of the traveling salesman polytope be used to give a
formulation of the traveling salesman problem in terms of spectral graph theory? What can
be learned from this?

General transitivity in polytopes

We noted that general transitivity in convex polytopes is still badly understood and that no
classification of δ-transitive polytopes is known for any δ ∈ {1, ..., d − 2}. It is conceivable
that each such class consists only of Wythoffian polytopes (and their polar duals), but it
would be completely mysterious for why these degrees of symmetry are related to reflection
groups.

Question 15. Is there a δ-transitive polytopes P ⊂ Rd for some δ ∈ {1, ..., d − 2} that is not
Wythoffian or the polar dual of a Wythoffian polytope?

Similar phenomena are expected for the “wild” classes of 0-transitive and (d−1)-transitive
polytopes if we impose additional weak constraints. As shown in Chapter 5, the restriction
to centrally symmetric 2-faces results in a collapse of complexity to Γ -permutahedra (which
are Wythoffian). Other interesting sub-classes are vertex-transitive polytopes that are

• facet-transitive,

• circumscribed,

• self-dual, or

• simple.

In each case, the only known examples are Wythoffian polytope, their duals and orbit poly-
topes that are constructed from groups that are closely related to reflection groups (e.g. pos-
itive determinant subgroups). But it is rather unclear why this should be the case. Convexity
seems to impose stark restrictions, even under comparatively weak symmetry assumptions,
and in each case it leads us back to the Wythoffian polytopes:

Question 16. What is the deeper connection of the reflection groups with convexity?
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The classification of highly symmetric polytopes can also lead to classification results in
less geometric domains. For example, matroids allow several representations by polytopes,
one of which is called the matroid base polytope, spanned by the characteristic vectors of
its bases. The classification of edge-transitive polytopes provides a classification of base-ex-
change-transitive matroids, that is, matroids in which any two base-exchanges are related
by a matroid symmetry. The conjectured classification of edge-transitive polytopes would
imply that the only matroids of this degree of symmetry are uniform matroids. It might be
worthwhile to identify other classes of combinatorial objects that have an intrinsic “convex
nature” like matroids and therefore lend themselves to such an investigation.

Convexity might not be the essential restriction in all of this. It is unclear how much
richness we gain by switching to the combinatorial domain (e.g. to simplicial or polytopal
complexes, or even certain types of partially ordered sets). Replacing convexity by mere
compactness allows for still wild but highly symmetric objects, such as the abstract regular
polytopes. Does this change if we restrict to homology spheres or simplicial spheres?

Question 17. Can we classify the edge-transitive (or for that matter, δ-transitive) simplicial
complexes under any of these restrictions?

144



Theses

1. The existence of spectral polytopes is a curious phenomenon in the intersection of
combinatorics, geometry and spectral graph theory that has since evaded a satisfying
explanation. This phenomenon can be addressed on multiple levels, most satisfyingly
with the techniques of convex geometry.

2. The arrangement space U := spanΦ of a family of points v1, ..., vn ∈ Rd , where Φ> :=
(v1, ..., vn) ∈ Rd×n, is a unifying tool in the investigation of symmetry, rigidity and
spectral properties of point arrangements, graph realizations and polytopes.

3. Symmetry restrictions can be used to develop a fruitful theory of rigidity for point
arrangements, graph realizations and polytopes.

4. There is a rich interplay between symmetry properties of graphs and their spectral
properties. These are expressed in the theory of spectral graph realizations. The spec-
trum of a graph influences rigidity properties of graph realizations with prescribed
symmetries.

5. There is a connection between geometric convexity and the second-largest eigenvalue
θ2 of a graph. This is most evident from the fact that θ -spectral convex polytopes are
known only if θ = θ2.

6. Polytopes with combined vertex- and edge-transitivity have outstanding properties:
they are always θ2-spectral, uniquely determined by their edge-graph, they realize
all the symmetries of the edge-graph, have an irreducible symmetry group and metric
properties that are tightly linked to the second-largest eigenvalue θ2 of the edge-graph.

7. Classifying edge-transitive polytopes is a non-trivial task. Still, it is possible to orga-
nize edge-transitive polytopes in a hierarchy that makes their structural variety (or lack
thereof) more evident. This hierarchical organization allows the identification of sev-
eral sub-classes for which a classification can be achieved, such as distance-transitive
polytopes and edge-transitive polytopes that are not vertex-transitive.

8. The class of edge-transitive polytopes is probably less rich than one would expect from
its comparison to the wild class of vertex-transitive polytopes. Edge-transitivity seems
to have a deeper connection to the reflection groups and their associated orbit poly-
topes – the Wythoffian polytopes. The known examples allow the formulation of a
precise conjecture for their classification.

9. The investigation of edge-transitivity leads to questions about polytopes with a bipar-
tite edge-graph, such as zonotopes or permutahedra. Having a bipartite edge-graph
or even centrally symmetric 2-faces is an unexpectedly strong structural restriction
when combined with other properties, such as being vertex-transitive. For example,
the vertex-transitive zonotopes can be completely enumerated.
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A Matrix Groups and Representations

We follow no particular literature on representation theory, but a classical reference on linear
representations of finite groups is [69]. All non-trivial statements without a reference are pro-
ven below.

A matrix group is a set Γ ⊆ GL(Rd) of invertible matrices closed under matrix multiplication
and inverses. In other words, it is a group whose elements are matrices and whose group op-
eration is matrix multiplication. For a permutation groupΣ ⊆ Sym(V ) on a set V = {1, ..., n},
a (linear)Σ-representation is a group homomorphism T : Σ→ GL(Rd). Both concepts, matrix
groups and representations, are closely related, use very similar terminology and yield equiv-
alent theorems (after all, the image of a representation is a matrix group). We discuss matrix
groups first, and then transfer the terminology and results to representations.

A.1 Matrix groups

Most matrix groups that we discuss are finite subgroups of O(Rd), that is, are finite orthogo-
nal matrix groups. Likewise, most of our representations T : Σ→ O(Rd) are orthogonal rep-
resentations. This comes with no loss of generality.

Lemma A.1. Every finite matrix group Γ ⊂ GL(Rd) is conjugate (hence isomorphic) to an ortho-
gonal matrix group Γ ′ ⊆ O(Rd). That is, there is X ∈ GL(Rd) so that

φ : Γ → Γ ′, T 7→ T ′ := X T X−1

defines a group isomorphism.

Proof. If φ is well-defined then it is a group isomorphism. It therefore suffices to construct
X ∈ GL(Rd) so that X T X−1 is orthogonal for all T ∈ Γ . Since Γ is finite, we can set

X̄ :=
∑

T∈Γ
T>T.

For all x ∈ Rd \ {0} holds

x>X̄ x =
∑

T∈Γ
x>T>T x =

∑

T∈Γ
‖T x‖2 > 0.

That is, X̄ is positive definite, and we can define X := X̄ 1/2 ∈ GL(Rd) as the unique positive
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A Matrix Groups and Representations

definite matrix with X>X = X̄ . We can then show that X T X−1 is orthogonal for all T ∈ Γ :

(X T X−1)>(X T X−1) = X−>T>X>X T X−1

= X−>T>
�∑

T̄∈Γ

T̄> T̄
�

T X−1

= X−>
�∑

T̄∈Γ

(T̄ T )>(T̄ T )
�

X−1

= X−>
�∑

T̄∈Γ

T̄> T̄
�

X−1 = X−>X>X X−1 = Id .

From now on we focus on finite orthogonal matrix groups.

Definition A.2. Let Γ ⊆ O(Rd) be a matrix group.

(i) A subspace U ⊆ Rd is called Γ -invariant if it is set-wise fixed by all T ∈ Γ , that is,

T x ∈ U , for all x ∈ U and T ∈ Γ .

The subspaces {0},Rd ⊆ Rd are always invariant, and are called trivial invariant sub-
spaces of Γ .

(ii) A Γ -invariant subspace U ⊆ Rd is called Γ -irreducible if it has no non-zero Γ -invariant
subspace. Otherwise it is called Γ -reducible.

(iii) Γ is called irreducible if there are no non-trivial Γ -invariant subspaces, or equivalently,
if Rd is Γ -irreducible. Otherwise it is called reducible.

We often write invariant, irreducible, etc. if the group is clear from context.

Observation A.3. Whenever U , U ′ ⊆ Rd are Γ -invariant, so is U ∩ U ′. Since U ∩ U ′ ⊆ U , U ′,
if at least one of U or U ′ is irreducible then either U = U ′ or U ∩ U ′ = {0}.

Observation A.4. If U ⊆ Rd is Γ -invariant (and Γ is an orthogonal matrix group), then the
orthogonal complement U⊥ ⊆ Rd is Γ -invariant as well. This is special to orthogonal matrix
groups and is not true for general matrix groups Γ ⊆ GL(Rd).

Applied recursively, we can see that Rd decomposes as a direct sum

Rd = U1 ⊕ · · · ⊕ UK

of pair-wise orthogonal Γ -irreducible subspaces Ui ⊆ Rd . Note however that this decompo-
sition is not necessarily unique.

Observation A.5. If U , U ′ ⊆ Rd are Γ -invariant and πU denotes the orthogonal projection
onto U , then

πU U ′ := {πUu | u ∈ U ′} ⊆ U

is again Γ -invariant. This follows essentially from πU commuting with all T ∈ Γ (one checks
easily that they commute on U and U⊥ respectively).

If U is irreducible and sinceπU U ′ ⊆ U , we have eitherπU U ′ = U orπU U ′ = {0}. Likewise,
if U ′ is irreducible, so is πU U ′, as proven in Proposition A.6 below.
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A.2 Representations

Proposition A.6. If U , U ′ ⊆ Rd are Γ -invariant and U ′ is irreducible, then πU U ′ is irreducible
as well.

Proof. Let U ′′ ⊆ πU U ′ be a Γ -invariant subspace. Since U ′ is irreducible, the projection
πU ′U

′′ is either U ′ or {0} (by Observation A.5). In the first case we find dim U ′ = dimπU ′U
′′ ≤

dim U ′′ ≤ dimπU U ′ ≤ dim U ′, and hence U ′′ = πU U ′. In the second case we have U ′′ ⊥ U ′,
and if u ∈ U ′′ \ {0}, then u ⊥ U ′, in contradiction to u ∈ πU U ′, and therefore U ′′ = {0}. In
any case, U ′′ is a trivial invariant subspace of πU U ′, and πU U ′ is irreducible.

A.2 Representations

The image of a representation T : Σ→ O(Rd) (we restrict to orthogonal representations) is
a matrix group. If Σ∼= im T (that is, if T is injective), the representation is said to be faithful.

The terminology introduced for matrix groups translates to representations: a subspace
U ⊆ Rd is T -invariant resp. T -irreducible if it is invariant resp. irreducible w.r.t. the image
im T . T is said to be irreducible if its image is irreducible as a matrix group.

Every permutation group Σ ⊆ Sym(V ) has a canonical orthogonal representation Σ 3 σ
7→ Πσ ∈ Perm(Rn) by permutation matrices. Invariant and irreducible subspaces w.r.t. this
representation are called Σ-invariant resp. Σ-irreducible.

Definition A.7. Given two representations T : Σ→ O(Rd) and T ′ : Σ→ O(Rd ′).

(i) An equivariant map (or intertwining map) is a transformation R ∈ Rd×d ′ with

TσR= RT ′σ, for all σ ∈ Σ,

or TR= RT ′ for short.

(ii) The set of equivariant maps between T and T ′ is denoted Hom(T, T ′).

If T = T ′ we define the so-called endomorphism ring End(T ) := Hom(T, T ). This set is
naturally equipped with the structure of an R-algebra, that is, addition, multiplication
and R-scalar multiplication.

(iii) If there exists an invertible R ∈ Hom(T, T ′), then T and T ′ are said to be isomorphic
representations.

One of the most important tools in representation theory is known as Schur’s lemma. We
state a version of Schur’s Lemma for real orthogonal representations:

Theorem A.8 (Schur’s Lemma). Suppose that T : Σ→ O(Rd) is an irreducible representation.

(i) If T ′ : Σ → O(Rd) is another Σ-representation with R ∈ Hom(T, T ′), then R = αR′ for
some α ∈ R and R′ ∈ O(Rd). In particular, either Hom(T, T ′) = {0}, or T and T ′ are iso-
morphic.

(ii) End(T ) is a division algebra over R, that is, isomorphic to either R, C or H (the quater-
nions).
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Proof. Since T ′ is an orthogonal transformation, we have T>σ = T−1
σ = Tσ−1 . Then

TσRR> = RT ′σR> = R(RT ′
σ−1)> = R(Tσ−1R)> = RR>Tσ.

That is, RR>commutes with Tσ for allσ ∈ Σ, and the Tσ must preserve the eigenspaces of RR>.
But since T is irreducible, there are no non-zero proper T -invariant subspaces, and RR>must
have a single eigenspace to some eigenvalue θ ∈ R. Thus, RR> = θ Id. Note that RR> is
positive semi-definite, hence θ ≥ 0. Set α= θ1/2. If α= 0, then (i) follows trivially. If α > 0,
then set R′ = α−1R, so that R′R′>= Id and R′ is orthogonal. Then R= αR′, which proves (i).

We know that End(T ) is an R-algebra. It remains to show that it permits division by X ∈
End(T )\{0}. But given that all elements in End(T )\{0} are positive multiples of orthogonal
matrices (by (i)), this is obvious, and (ii) follows. The fact that a real division algebra is
isomorphic to either R, C or H is a standard result and known as the Frobenius theorem (see
e.g. [61]).

We close this section with a result about non-orthogonal irreducible subspaces. Two sub-
spaces U , U ′ ⊆ Rd are said to be non-orthogonal if U ′ 6⊆ U⊥ and vice versa. Furthermore, if
U ⊆ Rd is an invariant subspace of a representation T , then we can consider the restricted
representation T |U : Σ→ O(U), mapping σ ∈ Σ to Tσ interpreted as a map U → U .

Lemma A.9. Given a Σ-representation T, if U , U ′ ⊆ Rd are non-orthogonal T-irreducible sub-
spaces, then

(i) dim(U) = dim(U ′), and

(ii) the restrictions T |U and T |U ′ are isomorphic representations.

Proof. As mentioned in Observation A.5, πU : U ′→ U commutes with Tσ for all σ ∈ Σ, and
so does πU ′ : U → U ′. Then πUπU ′ ∈ End(T |U), and by Schur’s lemma (Theorem A.8), this
map is either zero or invertible. Since U and U ′ are non-orthogonal it cannot be zero and
must be invertible, and so must be πU : U ′→ U . Thus, dim(U) = dim(U ′), proving (i), and
πU is an invertible equivariant map between T |U and T |U ′ , proving (ii).
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B Spectral Graph Theory

A general introduction into spectral graph theory can be found in [15]. Aspects of spectral
graph theory that are particularly focused on highly symmetric or otherwise highly structured
graphs can be found in [30, Chapter 8 - 13].

Let G = (V, E) be a finite simple graph on the vertex set V = {1, ..., n}. Spectral graph theory
studies graphs via the spectral properties of associated matrices, such as the adjacency matrix
A∈ {0,1}n×n with

Ai j := [i j ∈ E] =

¨

1 if i j ∈ E

0 if i j 6∈ E
,

or the Laplace matrix L ∈ Zn×n with

Li j :=











−1 if i j ∈ E

degG(i) if i = j

0 otherwise

,

where degG(i) denotes the vertex degree of i ∈ V .
In this context, notions like spectrum, eigenvalue, eigenvector and eigenspace of a graph

are then meant to refer to the respective quantities of an associated matrix. For our purpose
this will mostly be the adjacency matrix. The respective quantity of the Laplace matrix shall
be called Laplacian eigenvalue, Laplacian eigenvector, etc.

Other matrices have been considered in this regard, such as the signless and normalized
Laplace matrix, or more general matrices M ∈ Rn×n with Mi j = 0 whenever i j 6∈ E (a pre-
cursor of so-called discrete Schrödinger operators).

Of particular interest are symmetric matrices (such as adjacency and Laplace matrix), as
for these all eigenvalues are real and can be enumerated in a standard order. For example,
the eigenvalues of the adjacency matrix are denoted θ1 > θ2 > · · ·> θm in decreasing order.
The set of all these eigenvalues (the spectrum) is denoted Spec(G). An arbitrary element of
Spec(G) will be denoted θ (without a subscript). In contrast, the Laplacian eigenvalues are
enumerated in increasing order: 0= λ1 < λ2 · · ·< λm (where m might be different from the
adjacency case), and an arbitrary Laplacian eigenvalue is denoted λ. Note in particular that
all eigenvalues of L are non-negative and that L is therefore a positive semi-definite matrix.
Moreover, the smallest eigenvalue is always zero and its multiplicity equals the number of
connected components of G.

Matters further simplify if we restrict to regular graphs (all vertices are of the same degree,
which we denote by deg(G)). Then, adjacency matrix and Laplace matrix are related by

L = deg(G) Id −A,
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and their eigenvalues satisfy λi = deg(G)−θi . Moreover, each eigenvector of A to θi is an ei-
genvector of L to λi . Since we often restrict to regular graphs, all construction that are based
on the eigenvectors (such as the spectral realizations) do therefore not depend on the choice
of matrix.
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C Polytope Theory

We follow the modern treatment in [79]. For a more classical reference consider [35].
A d-dimensional (convex) polytope P ⊂ Rd is the convex hull of finitely many points in Eu-

clidean space. In particular, P is a compact convex set. We often assume that P is full-dimen-
sional, that is, aff P = Rd .

A convex subset F ⊆ P is called face of P, if for any two x , y ∈ P holds

if t x + (1− t)y ∈ F for some t ∈ (0,1), then x , y ∈ F .

The faces of P are themselves polytopes, and F(P) denotes the set of all faces. The faces are
partially ordered by inclusion and F(P) can be considered as a partially ordered set. In fact,
F(P) carries the structure of a lattice (each subset has a least upper bound and a greatest
lower bound) which justifies the name face lattice. It is a bounded lattice with a least and a
greatest element ∅, P ∈ F(P) respectively (the trivial faces). Two polytopes are said to be
combinatorially equivalent if their face lattices are isomorphic.

A face is said to be δ-dimensional (or is called a δ-face of P) if its affine hull is of dimension
δ (the dimension of ∅ is defined to be −1). By Fδ(P) ⊆ F(P) we denote the set of δ-dimen-
sional faces of P. The 0-faces are called vertices, the 1-faces are called edges, and the (d−1)-
faces are called facets of P.

Except for the empty face, all faces of a polytope can be defined by supporting vectors:

Proposition C.1. For f ⊆ P the following are equivalent:

(i) f is a non-empty face of P.

(ii) f is the set of maximizers of 〈c, ·〉 in P, where c ∈ Rd is called a supporting vector of f .

The edge-graph GP of P is (isomorphic to) the graph with vertex set F0(P), where v, w ∈
F0(P) are adjacent if they are the end vertices of an edge of P, that is, if conv{v, w} ∈ F1(P).
If GP is a regular graph and its degree matches dim aff P, then P is called a simple polytope.

The skeleton (or 1-skeleton of P) usually denotes the union of the elements of F1(P). We
shall use a different definition: the skeleton is a map skP : GP → F0(P) mapping each vertex
of the edge-graph to its respective point in space (this is the identity if the edge-graph is
defined as above, but the edge graph can also be defined on a different vertex set).

If 0 ∈ int P, then the polar dual of P,

P◦ := {x ∈ Rd | 〈x , v〉 ≤ 1 for all v ∈ F0(P)},

is again a polytope. In fact, the face lattice F(P◦) is isomorphic to the inverse lattice of F(P)
(that is, with reversed lattice order). Each δ-dimensional face f ∈ F(P) has an associated
(d −δ− 1)-dimensional dual face in P◦.
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The (Euclidean) symmetry group Aut(P) ⊆ O(Rd) is the set of orthogonal matrices that
fix P set-wise. It holds Aut(P)∼= Aut(P◦).

One of the earliest results on polytopes concerns their rigidity. The 3-dimensional version
of the following theorem was proven by Cauchy (a version of the proof can be found in [1,
Section 12]). The higher dimensional analog is a result by Alexandrov (proven e.g. in [60,
Theorem 27.2]).

Theorem C.2 (Cauchy’s rigidity theorem). Let Pi ⊂ Rdi , i ∈ {1,2}, di ≥ 3 be two combinato-
rially equivalent polytopes, and φ : F(P1)→ F(P2) a corresponding face lattice isomorphism.
If each (proper) face σ ∈ F(P1) \ {P1} is congruent to the corresponding face φ(σ) ∈ F(P2),
then P1 and P2 are congruent.

Two subsets ofRd are congruent (or isometric) if there exists a distance-preserving bijection
(or isometry) between them.

The following is an equivalent version that follows by induction on the dimension:

Corollary C.3. Let Pi ⊂ Rdi , i ∈ {1, 2} be two combinatorially equivalent polytopes, and let φ :
F(P1)→ F(P2) be a corresponding face lattice isomorphism. If

(i) each edge e ∈ F1(P1) has the same length as φ(e) ∈ F1(P2), and

(ii) each 2-face f ∈ F2(P1) is congruent to φ( f ) ∈ F2(P2),

then P1 and P2 are congruent.

C.1 Zonotopes

Zonotopes are a special class of polytopes that have importance in various subfields of geome-
try, combinatorics and algebra. Their omnipresence is partially explained by their many equi-
valent definitions:

Definition C.4. A zonotope Z ⊆ Rd is a polytope that satisfies any (and then all) of the follo-
wing equivalent conditions:

(i) Z is the projection of a cube.

(ii) Z is the Minkowski sum of (finitely many) line segments.

(iii) Z has only centrally-symmetric faces.

(iv) Z has only centrally-symmetric 2-faces.

The equivalence of these definitions is well-established, but some directions are far from
obvious (see [54] for the direction (iv)=⇒ (i),(iii), or the references in [79, Section 7.3] for
a general overview).

Some properties of zonotopes are immediately evident from these definitions. For exam-
ple, by Definition C.4 (iii) (and since a polytope is a face of itself), zonotopes are centrally
symmetric.
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C.1 Zonotopes

Let us assume that Z ⊂ Rd is a full-dimensional zonotope. By central symmetry, we may
assume Z = −Z . From Definition C.4 (ii) then follows that Z can be written as

Z = Zon(R) :=
∑

r∈R

conv{0, r} (C.1)

for some finite centrally symmetric set R ⊆ Rd . This set might not be unique. It is clear from
(C.1) that dim span Z = dimspan R. We also see that every point v ∈ Z can be written as

v =
∑

r∈R

ar r, with a ∈ [0,1]R. (C.2)

This representation is, in general, not unique.
The combinatorial structure of a zonotope is clearly encoded in its generating sets and it

can be easily extracted.

Proposition C.5. If Z = Zon(R) and f ∈ F(Z) is a non-empty face of Z, then there is a unique
partition R= R− ·∪ R0 ·∪ R+ into disjoint sets, so that

f = Zon(R0) +
∑

r∈R+

r. (C.3)

Moreover, if c ∈ Rd is a supporting vector for f , then

R0 := {r ∈ R | 〈r, c〉= 0}= R∩ c⊥ and R± := {r ∈ R | ±〈r, c〉> 0}. (C.4)

In particular, these sets are independent of the choice of the supporting vector c.

Proof. By (C.2) each point v ∈ Z can be written in the form

v =
∑

r∈R

ar r, for some coefficients ar ∈ [0,1].

Fix a partition R= R− ·∪ R0 ·∪ R+. Consider the following two possible sets of constraints
for the coefficients:

(∗) ar =











0 if 〈r, c〉< 0

1 if 〈r, c〉> 0

arbitrary if 〈r, c〉= 0

, (∗∗) ar =











0 if r ∈ R−
1 if r ∈ R+

arbitrary if r ∈ R0

.

Since c is a supporting vector of the face f , v lies in f if and only if v maximizes the func-
tional 〈c, ·〉, which is the case if and only if the coefficients ar satisfy (∗).

On the other hand, ar satisfying (∗∗) is equivalent to

v ∈
¦∑

r∈R0

ār r +
∑

r∈R+

r
�

�

� ā ∈ [0, 1]R0
©

= Zon(R0) +
∑

r∈R+

r.

Thus, (C.3) holds if and only of the two constraints describe the same set of coefficients.
Comparing the constraints (∗) and (∗∗) shows that this happens exactly when the partition
is chosen as in (C.4).
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C Polytope Theory

Corollary C.6. The (non-empty) faces of a zonotope are zonotopes.

We mentioned previously that there can be multiple sets that generate the same zonotope.
However, there is only a single reduced generating set: a centrally symmetric set R ⊆ Rd is
reduced if R∩ span{r}= {±r} for all r ∈ R.

Proposition C.7. Given a zonotope Z, there is a unique finite, centrally symmetric and reduced
set R ⊂ Rd with Z = Zon(R). This set can be explicitly constructed as

R= Gen(Z) := {r ∈ Rd | conv{±r} is the translate of an edge of Z}.

The elements of Gen(Z) are called the (standard) generators of Z.

Proof. It is easy to see that Gen(Z) is finite, centrally symmetric and reduced.
Suppose that R ⊂ Rd is another finite, centrally symmetric and reduced set which satisfies

Zon(R) = Z . Since R is reduced, r ∈ R if and only if there is a vector c ∈ Rd with R ∩ c⊥ =
{±r}. By Proposition C.5 this is equivalent to the face of Z with supporting vector c being
a translate of Zon({±r}) = conv{±r}, which by dimension consideration must be an edge.
And this is equivalent to r ∈ Gen(Z). This shows R= Gen(Z).

The generators of a zonotope are invariant under translation of the zonotope and they are
well-defined for zonotopes that are not centered at the origin (but Zon(Gen(Z)) = Z might
no longer apply). In particular, they are well-defined for the faces of a zonotope.

Corollary C.8. If f ∈ F(Z) is a non-empty face of Z with support vector c ∈ Rd , then

Gen( f ) = Gen(Z)∩ c⊥.

Proof. By Proposition C.5 f is a translate of Zon(R0) with R0 := Gen(Z)∩ c⊥.

Definition C.9. Let R ⊂ Rd be a finite centrally-symmetric set:

(i) a subset S ⊂ R is called semi-star of R if it is the intersection of R with a half-space that
contains exactly half the elements of R.

In particular, S contains exactly one element from each subset {±r} ⊆ R.

(ii) a subset F ⊆ R is called a flat of R if it is the intersection of R with a linear subspace,
or equivalently, if F = R∩ span F .

Lemma C.10. For F ⊆ Gen(Z) the following are equivalent:

(i) F is a flat,

(ii) F = Gen( f ) for some non-empty face f ∈ F(Z).

Proof. If F is a flat, then it can be written as F = Gen(Z)∩ c⊥ for some c ∈ Rd . Let f ∈ F(Z)
be the face with support vector c. Then F = Gen( f ) by Corollary C.8.

Conversely, let f ∈ F(Z) be a non-empty face with F = Gen( f ), and let c ∈ Rd be a
support vector of f . Then F = Gen( f ) = Gen(Z)∩ c⊥ by Corollary C.8, and F is a flat.
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C.1 Zonotopes

Lemma C.11. The vertices of Z are in one-to-one correspondence with the semi-stars of Gen(Z):
for each semi-star S ⊂ Gen(Z)

vS :=
∑

r∈S

r ∈ F0(P)

is a vertex of Z. Conversely, for v ∈ F0(P) there is a unique semi-star Sv ⊂ Gen(Z) with v = vSv
.

Proof. Given v ∈ F0(P), by Proposition C.5 there are unique sets R0, R+ ⊆ Gen(Z) with

v = Zon(R0) +
∑

r∈R+

r.

Since v is a single point, we necessarily have R0 =∅. The set R+ as defined in Proposition C.5
is then clearly a semi-star.
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D Reflection Groups and Root Systems

An introduction to finite reflection groups and root systems can be found in [38,43].

D.1 Reflection groups

Definition D.1. A reflectionρ ∈ O(Rd) is an orthogonal transformation that satisfies any (and
then all) of the following equivalent conditions:

(i) ρ is a non-identity transformation that fixes a hyperplane point-wise.

(ii) ρ can be written in the form

ρ = ρr := Id−
r r>

‖r‖2

for some non-zero vector r ∈ Rd .

(iii) ρ has spectrum {1d−1, (−1)1}.

Definition D.2. A reflection group Γ ⊆ O(Rd) is a matrix group generated by reflections, that
is, it can be written in the form

Γ = 〈ρr | r ∈ R〉

for some set R ⊆ Rd \ {0}.

We are specifically interested in the finite reflection groups. For such, a complete classifica-
tion is available. The irreducible finite reflection groups are listed below. For now, we list only
their standard names, a description for how to construct them will follow in Appendix D.3:

• a 1-dimensional group I1 = {Id,− Id},

• for each n≥ 3, a 2-dimensional group I2(n),

• for each d ≥ 3, three d-dimensional groups Ad , Bd and Dd (with exception A3
∼= D3),

• further six exceptional groups H3, H4, F4, E6, E7 and E8 in dimensions d ∈ {3, 4,6, 7,8}.

The subscripts always denote the dimension of the group. The reducible finite matrix groups
are obtained as direct sum of the irreducible ones.

Many of these groups are related to known geometric structures, such as the regular poly-
topes (cf. Appendix E.3):
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D.2 Root systems

Definition D.3. A root system R ⊆ Rd is a non-empty finite set of vectors, fixed set-wise under
reflections ρr for all r ∈ R, i.e.,

ρrR= R, for all r ∈ R.

The elements of R are called roots.

Note that the literature sometimes requires a further “crystallographic condition” that we
not include in our definition. Root systems are always centrally symmetric, that is, R = −R.
Finite reflection groups and root systems are two sides of the same coin:

Definition D.4.

(i) For a set R ⊂ Rd \ {0} the group Γ (R) := 〈ρr | r ∈ R〉 is called the Weyl group of R.

(ii) If Γ ⊆ O(Rd) is a finite reflection group, then R(Γ ) := {r ∈ Sd−1 | ρr ∈ Γ } is called the
root system of Γ (where Sd−1 ⊂ Rd is the unit sphere in Rd).

Clearly, Γ (R) is a reflection group.

Theorem D.5.

(i) The Weyl group Γ (R) of a root system R ⊂ Rd is a finite reflection group.

(ii) If Γ ⊆ O(Rd) is a finite reflection group, then R(Γ ) is a root system with Weyl group Γ .

Because of this connection, root systems admit a similar classification as the finite reflec-
tion groups, though it is not one-to-one. It becomes one-to-one if we require the root systems
to be a set R ⊂ Sd−1 of unit vectors.

Most finite reflection groups act transitively on their root systems, that is, for any two r, s ∈
R(Γ ) we find a T ∈ Γ with Tr = s. Few reflection groups are exceptions to this rule: each of
I2(2n), Bd and F4 has two orbits on its roots [38, Section 2.11].

Root systems are naturally associated with hyperplane arrangements. To each root system
R ⊂ Rd we can assigned the hyperplane arrangement

H := {r⊥ | r ∈ R}.

The connected components of Rd \H are known as Weyl chambers of R resp. of Γ (R). The
Weyl group Γ (R) acts transitively, in fact, regularly, on the Weyl chambers.

D.3 Coxeter-Dynkin diagrams

Coxeter-Dynkin diagrams provide a compact graphical notation for reflections groups (and
root systems) that contains enough information to reconstruct the group (or the root system)
from the notation alone.
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Given angles θi j ∈ R for i, j ∈ {1, ..., d}, i 6= j, there exists, up to orthogonal transforma-
tions, at most one set of unit vectors r1, ..., rd ∈ Rd with

Ý(ri , r j) = θi j for all i 6= j.

These vectors can then be used to define a reflection group Γ := 〈Tri
| i ∈ {1, ..., d}〉 ⊆ O(Rd),

and from this, a root system. One can show that in order for this reflection group to be a
finite group, the angles must satisfy θi j = π/mi j for some integers mi j ≥ 2, i 6= j. Each such
set of integers then determines a reflection group, but most of them are still not finite.

An ingenious graphical representation of these integers is given by an edge-labeled com-
plete graph G = (V, E) on d vertices V = {1, ..., d}, for which the edge i j ∈ E is labeled with
mi j . For ease of interpretation one usually applies the following two rules:

• if mi j = 2, then we do not draw an edge (the graph is not complete anymore).

• if mi j = 3, then we do not draw the edge label.

This decorated graph is known as a Coxeter-Dynkin diagram, and each one describes a unique
reflection group or root system.

Below you can find depictions of the standard diagrams that generate the irreducible finite
reflection groups from Appendix D.1:

A Coxeter-Dynkin diagram with d vertices induces a reflection group in d-dimensional space,
and so the dimension is immediately evident from the representation. Also, note that every
finite d-dimensional reflection group can therefore be generated from d reflections.

The Coxeter-Dynkin diagram of a direct sum of reflections groups Γ and Γ ′ is the disjoint
union of the diagrams of Γ and Γ ′ respectively. Every reducible finite reflection group can be
represented in this way. A reflection group is irreducible if and only if it can be represented
by a connected Coxeter-Dynkin diagram.
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E Wythoffian, Uniform and Regular
Polytopes

E.1 Orbit polytopes and Wythoffian polytopes

Definition E.1. Given an orthogonal matrix group Γ ⊆ O(Rd) and a point x ∈ Rd (called the
generator), the orbit polytope Orb(Γ , x) is the convex hull of the orbit Γ x , that is

Orb(Γ , x) := conv{T x | T ∈ Γ }.

Some notes on orbit polytopes:

• In general, the combinatorial type of Orb(Γ , x) depends on the choice of x .

• An orbit polytope is vertex-transitive. In fact, every vertex-transitive polytope is an or-
bit polytope of its symmetry group.

• It always holds Γ ⊆ Aut(Orb(Γ , x)), but we do not always have equality.

An especially important class of orbit polytopes is generated by the finite reflection groups
introduced in Appendix D.

Definition E.2. A Wythoffian polytope is an orbit polytope of a finite reflection group.

E.2 Coxeter-Dynkin diagrams for Wythoffian polytopes

In Appendix D.3 we introduced a graphical notation, the Coxeter-Dynkin diagram, to denote
reflection groups. We can extend this notation to denote combinatorial types of Wythoffian
polytopes.

Recall that a Coxeter-Dynkin diagram with d vertices uniquely determines a set of d unit
vectors r1, ..., rd ∈ Rd (up to orthogonal transformation), and by this, a set of hyperplanes
r⊥i . Let Γ be the reflection group determined by the diagram. Suppose that it is a finite group
and consider the Wythoffian polytopes Orb(Γ , x) with generator x ∈ Rd .

The hyperplanes r⊥i bound one of the Weyl chambers of Γ , and since Γ acts transitively on
these chambers, we can assume that x was chosen from this chamber.

It then turns out that the combinatorial type of the Wythoffian polytope Orb(Γ , x) depends
only on the set {i | x ∈ r⊥i } ⊆ {1, ..., d}, that is, the set of hyperplanes the generator is con-
tained in.

We can “enrich” Coxeter-Dynkin diagrams to denote this choice of hyperplanes by adding
rings around vertices: a vertex i ∈ V of the diagram is ringed if and only if x 6∈ r⊥i (note the
negation). One says that the reflection on r⊥i is active.
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Observation E.3. If the Coxeter-Dynkin diagram has no ringed vertices, then the generator
is on all hyperplanes. But the intersection of all hyperplanes is only the origin. The resulting
Wythoffian polytopes is therefore a single point.

Likewise, if not every connected component of the diagram has at least one ringed node,
then the polytope collapses in some dimensions and is no longer full-dimensional.

Observation E.4. If the Coxeter-Dynkin diagram has a single ringed vertex, then the genera-
tor is on all hyperplanes but one. The intersection of these d−1 hyperplanes in d-dimensional
space results in a 1-dimensional subspace. The choice of the generator from this 1-dimensio-
nal subspace (minus the origin) leaves us to control the scale of the resulting orbit polytope,
but gives no further freedom. The resulting Wythoffian polytope is therefore uniquely deter-
mined up to scale and orientation.

“Single-ringed Wythoffian polytopes” include the regular polytopes (see Appendix E.3).

The diagram notation for Wythoffian polytopes has other remarkable properties.

Theorem E.5. The faces of a Wythoffian polytope P ⊂ Rd are themselves Wythoffian.
The Coxeter-Dynkin diagrams of the (d−k)-dimensional faces of P are obtained by deleting k

vertices from the diagram, so that each resulting connected component has at least one ringed
vertex.

The “generic” Wythoffian polytopes are a form of generalized permutahedra:

Definition E.6. Given a finite reflection group Γ ⊆ O(Rd), a Γ -permutahedron is a polytope
P ⊂ Rd that satisfies any (and then all) of the following equivalent conditions:

(i) P is a Wythoffian polytope described by a Coxeter-Dynkin diagram in which all vertices
are ringed.

(ii) P = Orb(Γ , x), where x ∈ Rd is a generic generator, that is, x is not fixed by any non-
identity transformation of Γ .

(iii) Γ acts regularly on the vertices of P.

In the literature the term “permutahedron” is often reserved for the standard permutahe-
dron, which is the convex hull of the coordinate permutation of (1, 2, ..., d+1) ∈ Rd+1 (which
lives in a d-dimensional affine subspace of Rd+1). Considered as a d-dimensional polytope,
this actually coincides with the Ad -permutahedron from Definition E.6.

E.3 Uniform and regular polytopes

Each Wythoffian polytope has a unique realization in which all edges are of the same length.
Often the ringed Coxeter-Dynkin diagrams are meant to denote only this special realization,
which is then a unique polytope up to scale and orientation.

Wythoffian polytopes of this form are called Wythoffian uniform polytopes, and they belong
to the larger and historically relevant class of uniform polytopes:
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E.3 Uniform and regular polytopes

Definition E.7. A vertex-transitive polytope P ⊂ Rd is called uniform, if either

(i) d = 2, and it is a regular polygon, or

(ii) d > 2, and all its facets are uniform polytopes.

The uniform polytopes have been most famously studied by Coxeter [18,19], as well as by
Johnson [40], who coined a lot of their terminology.

Example E.8. The uniform polytopes include the regular polytopes.
In three dimensions they encompass the Platonic and Archimedean solids, the prisms and

anti-prisms, most of which are Wythoffian polytopes (cf. Observation E.10).
Every Wythoffian polytope described by a connected Coxeter-Dynkin diagram with a single

ringed vertex is already uniform (cf. Observation E.4).

Observation E.9. Given any two uniform polytopes, their cartesian product is again a uni-
form polytope. Uniform polytopes that can be obtained in this way are called prismatic.

The distinction prismatic/non-prismatic can be compared to the distinction reducible/irre-
ducible. However, the analogy is not perfect, as there are non-prismatic uniform polytopes
with reducible symmetry groups (e.g. the anti-prisms).

Observation E.10. As mentioned previously, every Wythoffian polytope has a unique real-
ization as a uniform polytope. Only few non-Wythoffian non-prismatic uniform polytopes
are known:

• for d = 3, the snub cube and the snub dodecahedron (certain orbit polytopes of the po-
sitive determinant subgroups B+3 ⊂ B3 and H+3 ⊂ H3).

• also for d = 3, the anti-prisms (certain orbit polytopes of the positive determinant sub-
groups of I2(2n)⊕ I1).

• for d = 4, the grand anti-prism, discovered by Conway [17] (a specific orbit polytope
of the positive determinant subgroup of I2(10)⊕ I2(10)).

The classification of uniform polytopes is complete only up to dimension d = 4, but open in
all higher dimensions. In particular, it is unknown whether there exist non-prismatic non-
Wythoffian uniform polytopes in dimension five or above.

Regular polytopes

The famously known regular polytopes (including the Platonic solids) emerge as special cases
among the uniform polytopes. We call a Coxeter-Dynkin diagram a string diagram if it is a
single path without any branches.

Definition E.11. A regular polytope is a polytope P ⊂ Rd that satisfies any (and then all) of
the following equivalent conditions:

(i) P is a Wythoffian (uniform) polytope represented by a string diagram in which exactly
one of the end-vertices is ringed.

(ii) Aut(P) acts transitively on the δ-dimensional faces for all δ ∈ {0, ..., d − 1}.
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(iii) Aut(P) acts transitively on the flags of P, where a flag is a chain f0 ⊂ f1 ⊂ · · · ⊂ fd of
faces with fδ ∈ Fδ(P) being a δ-dimensional face of P.

(iv) all facets of P are the same regular polytope, and at each vertex of P meet the same num-
ber of facets.

The historically first definition of regular polytope is captured in Definition E.11 (iv). The
2- and 3-dimensional regular polytopes have been known since antiquity (as regular poly-
gons and Platonic solids). A classification in general dimension was obtained by the Swiss
mathematician Ludwig Schläfli already in the 19th century [66]. He obtained the following
list, which, given the alternative definitions in Definition E.11, can be easily derived from
the classification of finite reflection groups:

d
1 I1 line segment
2 I2(n) regular n-gon, n≥ 3
3 A3 tetrahedron

B3 cube
B3 octahedron
H3 dodecahedron
H3 icosahedron

4 A4 4-simplex (5-cell)
B4 4-cube (8-cell)
B4 4-crosspolytope (16-cell)
F4 24-cell
H4 120-cell
H4 600-cell

≥ 5 Ad d-simplex
Bd d-cube
Bd d-crosspolytope

Note that in every dimension d ≥ 5 there exist only three regular polytopes: the simplex, the
cube and the crosspolytope.
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F Mathematica Scripts

The following Mathematica script takes as input a graph G (in the example below, this is the
edge-graph of the dodecahedron, but can be replaced by an arbitrary graph), and an index
k of an eigenvalue. It then compute the θk-realization (vertex coordinates stored in vert).
If the dimension turns out to be appropriate, the spectral embedding of the graph, as well
as the eigenpolytope are plotted.

(* Input:
* the graph G, and
* the index k of an eigenvalue (k = 1 being the largest eigenvalue ).

*)
G = GraphData["DodecahedralGraph"];
k = 2;

(* Computation of vertex coordinates 'vert ' *)
n = VertexCount[G];
A = AdjacencyMatrix[G];
eval = Tally[Sort@Eigenvalues[A//N], Round [#1 -#2 ,0.00001]==0 &];
d = eval[[-k,2]]; (* dimension of the eigenpolytope *)
vert = Transpose@Orthogonalize@

NullSpace[eval[[-k,1]] * IdentityMatrix[n] - A];

(* Output:
* the graph G,
* its eigenvalues with multiplicities ,
* the spectral embedding , and
* its convex hull (the eigenpolytope ).

*)
G
Grid[Join [{{θ ,"mult"}}, eval], Frame→All]
Which[

d<2 , Print["Dimension too low , no plot generated."],
d==2, GraphPlot[G, VertexCoordinates→vert],
d==3, GraphPlot3D[G, VertexCoordinates→vert ,
d>3 , Print["Dimension too high , 3-dimensional projection is plotted."];

GraphPlot3D[G, VertexCoordinates→vert [[;; ,1;;3]] ]
]
If[d==2 || d==3,

Region `Mesh `MergeCells[ConvexHullMesh[vert]]
]
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G Additional proofs and computations

We collect some straightforward computations and proofs of well-known facts that would
have interrupted the flow of the main text.

G.1 Two geometric statements

Proposition G.1. Given a set x0, ..., xd ∈ Rd \{0} of d+1 vectors with pair-wise negative inner
product, then there are positive coefficients α0, ...,αd > 0 with

α0 x0 + · · ·+αd xd = 0.

Proof. We proceed by induction. The induction base d = 1 is trivially satisfied.
Suppose now d ≥ 2, and, w.l.o.g. assume ‖x0‖ = 1. Let π0 be the orthogonal projection

onto x⊥0 , that is, π0(u) := u− x0〈x0, u〉. In particular, for i 6= j and i, j > 0

〈π0(x i),π0(x j)〉= 〈x i , x j〉
︸ ︷︷ ︸

<0

−〈x0, x i〉
︸ ︷︷ ︸

<0

〈x0, x j〉
︸ ︷︷ ︸

<0

< 0.

Then {π(x1), ...,π0(xd)} is a set of d vectors in x⊥0
∼= Rd−1 with pair-wise negative in-

ner product. By induction assumption there are positive coefficients α1, ...,αd > 0 so that
α1π0(x1) + · · ·+αdπ0(xd) = 0.

Set α0 := −〈x0,α1 x1 + · · ·+αd xd〉 > 0. We claim that x := x0α0 + · · ·+αd xd = 0. Since
Rd = span{x0} ⊕ x⊥0 , it suffices to check that 〈x0, x〉= 0 as well as π0(x) = 0. This follows:

〈x0, x〉= α0 〈x0, x0〉
︸ ︷︷ ︸

=1

+ 〈x0,α1 x1 + · · ·+αd xd〉
︸ ︷︷ ︸

=−α0

= 0,

π0(x) = α0π0(x0)
︸ ︷︷ ︸

=0

+α1π0(x1) + · · ·+αdπ0(xd)
︸ ︷︷ ︸

=0

= 0.

An alternative proof of Proposition G.1 is based on the Perron-Frobenius theorem about
matrices with positive entries.

Proposition G.2. Let P ⊂ R3 be a polyhedron and v ∈ F0(P) a vertex of degree three. The in-
terior angles of the faces incident to v determine the dihedral angles at the edges incident to v
and vice versa.
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Proof. For w1, w2, w3 ∈ F0(P) the neighbors of v, let ui := wi − v denote the direction of
the edge ei from v to wi . Let fi j be the face that contains v, wi and w j . Then Ý(ui , u j) is the
interior angle of fi j at v.

The set {u1, u2, u3} is uniquely determined (up to some orthogonal transformation) by the
angles Ý(ui , u j). Furthermore, since P is convex, {u1, u2, u3} forms a basis of R3, and this
uniquely determines the dual basis {n12, n23, n31} for which 〈ni j , ui〉= 〈ni j , u j〉= 0. In other
words, ni j is a normal vector to fi j . The dihedral angle at the edge e j is then π−Ý(ni j , n jk),
hence uniquely determined. The other direction is analogous, via constructing {u1, u2, u3}
as the dual basis to the set of normal vectors.

G.2 A proof for spherical interior angles

The edge lengths in a spherical polyhedron (see page 125) are measured as angles between
its end vertices. Consider adjacent vertices vS

1 , vS
2 ∈ F0(PS), then the incident edge has

(arc-)length `S :=Ý(vS
1 , vS

2 ) =Ý(v1, v2).
It follows from Observation 6.7 that these angles are completely determined by the pa-

rameters, hence the same for all edges of PS .

Proposition G.3. For a face f ∈ F2(P) and a vertex v ∈ F0( f ), there is a direct relationship
between the value of α( f , v) and the value of β( f , v).

Proof. Let w1, w2 ∈ V2 be the neighbors of v in the 2k-face f , and set ui := wi − v. Then
Ý(u1, u2) = α( f , v). W.l.o.g. assume that v is a 1-vertex (the argument is equivalent for a
2-vertex).

For convenience, we introduce the notation χ(θ ) := 1− cos(θ ). We find that

(∗) 2`2 ·χ(α( f , v)) = `2 + `2 − 2`2 cos(Ý(u1, u2))

= ‖u1‖2 + ‖u2‖2 − 2〈u1, u2〉

= ‖u1 − u2‖2 = ‖w1 −w2‖2

= ‖w1‖2 + ‖w2‖2 − 2〈w1, w2〉

= r2
2 + r2

2 − 2r2
2 cosÝ(w1, w2) = 2r2

2 ·χ(Ý(w1, w2)).

The side lengths of the spherical triangle wS
1vSwS

2 areÝ(w1, w2),`S and `S . By the spherical
law of cosine1 we obtain

cosÝ(w1, w2) = cos(`S) cos(`S) + sin(`S) sin(`S) cos(β( f , v))

= cos2(`S) + sin2(`S)(cos(β( f , v))− 1+ 1)

= [cos2(`S) + sin2(`S)] + sin2(`S)(cos(β( f , v))− 1)

= 1− sin2(`s) ·χ(β( f , v))

=⇒ sin2(`S) ·χ(β( f , v)) = χ(Ý(w1, w2))
(∗)
=
� `

r2

�2
·χ(α( f , v)).

1cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ), where a, b and c are the side lengths (arc-lengths) of a spherical
triangle, and γ is the interior angle opposite to the side of length c.

172



G.2 A proof for spherical interior angles

173





Bibliography

[1] M. Aigner, G. M. Ziegler, K. H. Hofmann, and P. Erdős. Proofs from the Book, volume
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(2k1, ..., 2ks)-vertex, 122
(2k1, 2k2)-edge, 122
(n, ..., n)-hyperprism, see hyperprism
(n, n)-duoprism, see duoprism
221-polytope, 99
2k-face, 122
321-polytope, 99
P◦, see polar dual
P◦(c), 80
PG(θ ), see θ -eigenpolytope
∆d,k, see hyper-simplex
Fδ(P), 73
Γ -arrangement, 33

irreducible, 33
reducible, 33

Γ -permutahedron, 104
uniform, 104

Γ -realization, 52
irreducible, 52
reducible, 52

Γ -zonotope, 104
Gen(Z), 103
Πσ, see permutation matrix
Σ-arrangement
Σ-flexible, 41
Σ-rigid, 41
exceptionally rigid, 47
transitive, 45

Σ-deformation, 41
proper, 41

Σ-invariant subspace, see invariant subspace
Σ-irreducible subspace, see irreducible sub-

space
Σ-realization
Σ-flexible, 52

Σ-rigid, 52
Zon(R), 102
`(v), 60
Ad(G,Σ), 52
Ad(Σ), 41
ω(v), 60
skP , see skeleton
τ(v), see type of a vertex
θ -eigenpolytope, 15, 74
θ -realization, 53
vol(C), see relative volume
i-vertex, 117
k-reflection, 93
k-reflection group, 93
1-flag, see arc
1-reflection, see reflection
24-cell, 64, 69

arc, 58
arrangement, see point arrangement
arrangement matrix, 28
arrangement space, 28
arrangement space dictionary, 32
automorphism group, see symmetry group

barycenter, 57
binary polyhedral group, 48
bitruncation, see bitruncated regular poly-

tope

cartesian power, 91
Catalan solid, 79
central symmetry, 102
circumradius, 60
Colin de Verdière graph invariant, 81
Colin de Verdière matrix, 81
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congruent, 104, see also isometric
cosine, 60
cosine sequence, 68
cosine vector, 67
Coxeter-Dynkin diagram

transitive, 94
cuboctahedron, 70, 79, 90

deformation, see Σ-deformation
demi-cube, 96, 99
demi-hypercube, see demi-cube
diameter

of a graph, 65
dihedral angle, 61
dihedral group, 37
discrete Schrödinger operator, 59
distance

in a graph, 65
dodecahedral graph, 54
dodecahedron

regular, see regular dodecahedron
rhombic, see rhombic dodecahedron

duoprism, 91

edge in-sphere, 117
edge length, 60
edge midpoint, 90
edge-flip, 93
eigenpolytope, see θ -eigenpolytope
eigenspace

of a graph, 53
eigenvalue

of a graph, 53
eigenvector

of a graph, 53
equivariant map, 33
Euclidean symmetry

of an arrangement, 32
exterior angle, 107

flag-orbit, 89
flat, 103
flipped orientation, 93

generator

of a zonotope, 103
generic point, 104
geometric separation, see separated geo-

metrically
Gosset graph, 76
Gosset polytope, see 321-polytope
graph

arc-transitive, 59
distance-regular, 65, 75
distance-transitive, 66
edge-transitive, 59
half-transitive, 59
vertex-transitive, 58

graph realization, 51
θ -balanced, 56
θ -spectral, 53
arc-transitive, 59
balanced, see θ -balanced graph real-

ization
distance-transitive, 66
edge-transitive, 59
full-dimensional, 52
half-transitive, 59
normalized, 52
of full dimension, see full-dimensional

graph realization
of full local dimension, 62
spectral, see θ -spectral graph realiza-

tion
spherical, 52
symmetric, see Γ -realization
vertex-transitive, 58

halved n-cube, 76
Hamming graph, 76
Hamming polytope, 75, 91, 99
height

of a face, 118, 122
Holt graph, 98
hyper-simplex, 95, 99
hyperplane arrangement, 105

chamber-transitive, 114
with congruent chambers, 114

hyperprism, 91
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icosahedron
regular, see regular icosahedron

icosidodecahedron, 90
invariant subspace, 33

irreducible, see irreducible subspace
irreducible subspace, 34
Izmestiev matrix, 81

Johnson graph, 76

Minkowski sum, 102

norm
of a semi-star, 113

normalization
of a zonotope, see normalized zono-

tope

orbit polytope, 87
orthogonal projection, see projection

parameters
of a bipartite polytope, 117

pentagram, 77
permutahedron, see Γ -permutahedron
permutation group
Σ-rigid, 44
arc-transitive, 59
distance-transitive, 66
edge-transitive, 59
half-transitive, 59
regular, 47
rigid, see Σ-rigid permutation group
transitive, 45
vertex-transitive, 58

permutation matrix, 33
Petersen graph, 66
Petersen polytope, 75, 99
Platonic solid, see regular polytope, 88
point arrangement, 27

equivalent, 29
essentially transitive, 45
flexible, see Σ-flexible point arrange-

ment
full-dimensional, 28

normalized, 30
of full dimension, see full-dimensional
rigid, see Σ-rigid point arrangement
spherical, 30
symmetric, see Γ -arrangement

polar dual, 80
polygon

bipartite, 119
edge-transitive, 89, 115
regular, 89, 106
strictly bipartite, 119

polyhedron
edge-transitive, 90
strictly bipartite, 121

polytope, 73
∆-transitive, 88
δ-transitive, 88
θ -spectral, 15, 77
0-transitive, see vertex-transitive
1-transitive, see edge-transitive
abstract regular, 89
arc-transitive, 93
bipartite, 117
bitruncated regular, 97
centered at the origin, 73, 82
convex, see just polytope
distance-transitive, 98
dual, see polar dual
edge-transitive, 73, 88, 89
generic Wythoffian, see Γ -permutahedron
half-transitive, 97
inscribed bipartite, 120
neighborly, 78
non-prismatic, 96
omnitruncated uniform, 110
perfect, 17
polar, see polar dual
prismatic, 96
purely edge-transitive, 115
rectified regular, 90, 97
regular, 64, 88
runcinated regular, 97
simple, 111
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simultaneously vertex- and edge-transitive,
91

spectral, see θ -spectral
strictly bipartite, 117, 121
uniform, 78
vertex-transitive, 73, 88
Wythoffian, 87
Wythoffian uniform, 87

projection, 29

radius, see also circumradius
of a bipartite polytope, 117
of a graph realization, 59
of a point arrangement, 32

realization, see graph realization
rectification, see rectified regular polytope
reduced set of vectors, 103
reflection

generalized, see k-reflection
reflection group

finite, 87
generalized, see k-reflection group

regular dodecahedron, 54
regular icosahedron, 61
representation

of a Σ-arrangement, 33
rhombic dodecahedron, 79, 90, 115
rhombic triacontahedron, 79, 90, 115
root system, 104, 112

reduced, see reduced set of vectors
runcination, see runcinated regular poly-

tope

Schläfli graph, 76
Schläfli polytope, see 221-polytope
semi-star, 103
separated geometrically, 20, 37
skeleton

of a polytope, 73
spectrum

of a graph, 53
standard permutahedron, 111
sufficiently symmetric, 17, 56
symmetry, see also Euclidean symmetry

of a polytope, 73
sufficient, see sufficiently symmetric

symmetry group
combinatorial, 52
Euclidean, 73

Theorem of Izmestiev, 80
truncated 24-cell, 111
truncated octahedron, 111
truncated tetrahedron, 54, 79
type

of a vertex, 122

volume
relative, 81

Weyl chamber, 105
Weyl group, 105

zonotope, 101
inscribed, 102, 113
irreducible, 110
normalized, 109
reducible, 110
uniform, 108, 110
vertex-transitive, 101, 112
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