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Coned polytope frameworks

A coned polytope framework (CPF) consists of

I the 1-skeleton of a polytope

I an interior point (the cone point)

I edges between the cone point and polytope vertices.

CPFs provide a link between

I rigidity theory,

I polytope theory,

I convex geomety,

I Wachspress geometry.
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The stress-flex conjecture (briefly)

I There are objects called first-order flexes.

I There are objects called stresses.

I The flexes and stresses of CPFs appear to be “orthogonal” to each other,
even though one would not expect this.

The stress-flex conjecture (Connelly, Gortler, Theran, W.)

Let (G?
P ,p) be a coned polytope framework. For any choice of

I first-order flex ṗ : V → Rd, with ṗ? = 0

I stress ω : E → R, we write ωi := ωi?

holds ∑
i 6=?

ωi ṗi = 0. ←− stress-flex orthogonality

I The stress-flex orthogonality appears to holds in much greater generality
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A Hands-on Crash Course
in Rigidity Theory



Frameworks
= graph G = (V,E) + embedding p : V → Rd

Typical questions:

I Is it rigid?

I If Yes, how much rigid? → first-order rigid, globally rigid, generically rigid, ...

I If No, how does it flex? → realization spaces
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Rigidity

A framework is a pair (G,p) with a graph G and an embedding p : V → Rd.

I (G,p) and (G, q) are congruent if i.e. are the same up to orientation

‖pi − pj‖ = ‖qi − qj‖, for all i, j ∈ V .

I (G,p) and (G, q) are equivalent if i.e. have the same edge lengths

‖pi − pj‖ = ‖qi − qj‖, for all ij ∈ E.

I A flex of (G,p) is a continuous family (G,pt), t ∈ [0, 1] of pairwise
equivalent frameworks with p0 = p.

I A flex is trivial if all (G,pt) are pairwise congruent.

I (G,p) is flexible if there is a non-trivial flex. Otherwise (G,p) is rigid.

Martin Winter 4 / 30



Rigidity

A framework is a pair (G,p) with a graph G and an embedding p : V → Rd.

I (G,p) and (G, q) are congruent if i.e. are the same up to orientation

‖pi − pj‖ = ‖qi − qj‖, for all i, j ∈ V .

I (G,p) and (G, q) are equivalent if i.e. have the same edge lengths

‖pi − pj‖ = ‖qi − qj‖, for all ij ∈ E.

I A flex of (G,p) is a continuous family (G,pt), t ∈ [0, 1] of pairwise
equivalent frameworks with p0 = p.

I A flex is trivial if all (G,pt) are pairwise congruent.

I (G,p) is flexible if there is a non-trivial flex. Otherwise (G,p) is rigid.

Martin Winter 4 / 30



Hands-on: CPFs

Question: are CPFs rigid?

I Determining whether a framework (G,p) is rigid is ... not easy.

One would need to understand the realization space

Real(G,p) :=
{
(G, q) | ‖pj − pi‖ = ‖qj − qi‖ ∀ij ∈ E

}
.

Is it a single point? Is it discrete? ...

Theorem. (W., 2023)

Coned polytope frameworks are rigid.

(G?
P ,p) is the unique minimizer of the polytope energy

E(q) :=
∑
i,j

ωiωj‖qi − qj‖2.

where ω are the Wachspress coordinates of the cone point in P .
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Hands-on: CPFs

Conjecture.

A CPF is uniquely determined by its graph and edge lengths.

Attention: this is a strong statement!

I we do not input the polytope’s combinatorics.

I we do not input the polytope’s dimension.

Theorem. (W., 2023)

The conjecture is true

I locally at a given CPF.

I for centrally symmetric CPFs.

I for given combinatorial type.
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Are we done ... ?

Not quite. We also want to know “how much rigid” are CPFs?

first-order flex “=” does not change edge lengths in first order.

‖ptj − pti‖ = ‖pj − pj‖+ o(t).
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First-order theory

I Determining whether (G,p) is rigid is ... not easy.

One would need to understand the realization space

Real(G,p) :=
{
(G, q) | ‖pj − pi‖ = ‖qj − qi‖ ∀ij ∈ E

}
.

Is it a single point? Is it discrete? ...

I Idea: take the first derivative of a flex ṗ := ∂
∂tp

t|t=0.
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First-order rigidity = infinitesimal rigidity

‖ptj − pti‖ = const =⇒ 〈ptj − pti, ṗ
t
j − ṗti〉 = 0

A first-order flex of (G,p) is a map ṗ : V → Rd with

for all ij ∈ E 〈pj − pi, ṗj − ṗi〉 = 0.

︸ ︷︷ ︸
trivial
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First-order theory isn’t perfect
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Hands-on: CPFs

simplicial polytope:

I always first-order rigid (coned or not). (Dehn, 1900)

simple polytope:

I “never” first-order rigid. ← we will focus on these

#DOFs−#constraints = d(|V |+ 1)− (|E|
=d/2|V |

+ |V |) = ... = (d/2− 1)|V |+ d.
?
≥ #trivial flexes
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Stresses

A stress of (G,p) is a map ω : E → R with

for all i ∈ V
∑
j:i∼j

ωij(pj − pi) = 0.
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Rigidity matrix

ker(R) = { first-order flexes ṗ }, i.e. Rṗ = 0

coker(R) = { stresses ω }. i.e. R>ω = 0
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Stresses and flexes don’t usually coexist

If there are many edges ...

I we find many stresses, but no first-order flexes.

If there are few edges ...

I we find many first-order flexes, but no stresses.
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Hands-on: CPFs

Simplicial polytopes:

I potentially many stresses.

Simple polytopes:

I exactly one stress.

The stress emerges only if all faces are flat.

Paradigm: “stressability = flatability” (e.g. Maxwell-Cremona correspondence)
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Minkowski’s balancing condition

0 =
∑
i

vol(Fi)ni

=
∑
i

vol(Fi)
pi
‖pi‖

=
∑
i

ωi︷ ︸︸ ︷
vol(Fi)

‖pi‖
pi =

∑
i

ωipi

0 = vol(Fi)ni +
∑
j:j∼i

vol(Fij)nij = −
vol(Fi)

‖pi‖︸ ︷︷ ︸
ωi

(−pi) +
∑
j:j∼i

vol(Fij)

‖pj − pi‖︸ ︷︷ ︸
ωij

(pj − pi)

= −ωi(−pi) +
∑
j:j∼i

ωij(pj − pi).
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The Wachspress-Izmestiev stress

The Wachspress-Izmestiev stress exists for every CPF:

ωi? = Wachspress coordinate of the cone point at i-th vertex

ωij = ij-entry of Izmestiev matrix

ωi? =
vol(F �i )

‖pi‖
, ωij =

vol(F �ij)

‖pi‖‖pj‖ sin^(pi, pj)
.

For simple CPFs it is the only stress.

Martin Winter 17 / 30



Second-order theory

second-order flex “=” does not change edge lengths up to order two.

‖ptj − pti‖ = ‖pj − pi‖+ o(t2).

I next best thing if first-order rigidity fails.

I can provide quantitative bounds on “deformability”

Formally: a second-order flex is a pair (ṗ, p̈) so that for all ij ∈ E holds

0 = 〈pj − pi, ṗj − ṗi〉, 0 = 〈pj − pi, p̈j − p̈i〉+ ‖ṗj − ṗi‖2.

Theorem. (Connelly, Whiteley, 1996)

I (G,p) is second-order rigid if “every first-order flex ṗ is blocked by some
stress ω”, that is ∑

ij∈E
ωij‖ṗj − ṗi‖2 6= 0.

I (G,p) is prestress stable if there is a stress ω that “blocks all fo-flexes”.

Martin Winter 18 / 30
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Hands-on: CPFs

Conjecture.

CPFs are second-order rigid. Moreover, every first-order flex is blocked by the
Wachspress-Izmestiev stress.

Summary

I CPFs are always rigid.

I CPFs are not always first-order rigid (never if they are simple).

I We don’t know whether CPFs are second-order rigid.

rigid
second-order

rigid

?
first-order
rigid
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The Stress-Flex
Conjecture



A mysterious observation

The stress-flex conjecture (Connelly, Gortler, Theran, W.)

Let (G?
P ,p) be a coned polytope framework. For any choice of

I first-order flex ṗ : V → Rd, with ṗ? = 0

I stress ω : E → R, we write ωi := ωi?

holds ∑
i 6=?

ωi ṗi = 0. ←− stress-flex orthogonality

“Corollary”

CPFs are second-order rigid. (actually, prestress stable)

Martin Winter 20 / 30



A mysterious observation

The stress-flex conjecture (Connelly, Gortler, Theran, W.)

Let (G?
P ,p) be a coned polytope framework. For any choice of
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Extent of the conjecture

The stress-flex conjecture appears to hold ...

I no matter where the cone point is (inside, on the boundary, outside),
Not true for rigidity or second-order rigidity!

I no matter whether the polytope is convex,

I no matter the genus of the polytope,

I no matter whether it is orientable.

Conclusion: might be less about polytopes and more about closed PL-surfaces.
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Extended conjecture

Conjecture.

Let S ⊂ Rd be a closed PL-surface and x ∈ Rd some point. Let (G?
S ,p) be the

coned 1-skeleton. If ṗ is a first-order flex and ω is a stress, then∑
i 6=?

ωiṗi = 0.

Question: Does stress-flex orthogonality ever not hold?

Martin Winter 22 / 30



Extended conjecture

Conjecture.

Let S ⊂ Rd be a closed PL-surface and x ∈ Rd some point. Let (G?
S ,p) be the
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Stress-flex orthogonality holds generically

Observation (Dewar)

Let (G?,p) be a generic coned framework. Let ṗ be a first-order flex and ω a
stress. Then ∑

i 6=?

ωiṗi = 0.

Intuition:

I stresses and flexes live on different parts of a
framework.

But ... CPFs are very non-generic

Better question:

I Why does stress-flex orthogonality still hold?
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“choice of stress” might be a red herring

The stress-flex conjecture asks us to choose

I any first-order flex ṗ, and

I any stress ω.

But ... this freedom of choice might be a red herring!

Maybe ...

I ... only the Wachspress-Izmestiev stress is relevant?

I ... all stresses are generic except for the Wachspress-Izmestiev stress?

I ... solving the stress-flex conjecture will teach us something about
Wachspress Geometry.
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Is it really about closed surfaces?

Question: Does stress-flex orthogonality ever not hold?

generic coned
frameworks

⊂ coned framework with
overlapping stresses/flexes

⊂ coned surfaces.

What else has coexisting stresses and flexes?
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Non-example I

Lemma.

First-order flexes and stresses of coned frameworks are preserved by moving
vertices radially.

Observation: Moving vertices radially destroys flex-stress orthogonality.
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Non-example II

Spectral embeddings of sparse graphs have stresses and flexes!

... in fact, CPFs are spectral embeddings (Izmestiev, 2007)

Observation: General spectral embeddings do not satisfy stress-flex
orthogonality.

... e.g. 4- and 5-dimensional embeddings of Petersen graph.
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Reformulation & generalization

0 =

Minkowski’s

balancing condition∑
i

Vini =⇒ 0 =
∂

∂t

∑
i

Vini =
∑
i

V̇ini +
∑
i

Viṅi.

Conjecture.

If there is no first-order change in the angles between adjacent facets, then∑
i

V̇ini =
∑
i

Viṅi = 0.
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Thank you.

I M. Winter, “Rigidity, Tensegrity and Reconstruction of Polytopes under
Metric Constraints” (2023)

I R. Connelly, S. J. Gortler, L. Theran, M. Winter,
“Energies on Coned Convex Polytopes” (2024)

I R. Connelly, S. J. Gortler, L. Theran, M. Winter,
“The Stress-Flex Conjecture” (2024)

I September 24th – 25th, University of Leipzig
Workshop “Wachspress Geometry”



A possible approach

∑
i6=?

ωipi =
∑
i

vol(F �i )

‖pi‖
=

∑
i

vol(F �i )
pi
‖pi‖

=
∑
i

vol(F �i )︸ ︷︷ ︸
=:Vi

ni =
∑

Vini = 0.

For (G,pt) define

P t◦ := {x ∈ Rd | 〈pti, x〉 ≤ 1 for all i 6= ?}.
This gives t-dependent V t

i and nt
i, but we suppress the t-s.

0 =
∑
i

Vini =⇒ 0 =
∂

∂t

∑
i

Vini =
∑
i

V̇ini +
∑
i

Viṅi.

Conjecture.

If there is no first-order change in facet-origin distance and the angles between
adjacent facets, then ∑

i

V̇ini =
∑
i

Viṅi = 0.
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The dual picture

Infinitesimal displacement of the vertices so that

I vertex-origin distances stay the same. (in first order)

I polytope edge lengths stay the same. (in first order)

show
∑

i ωiṗi =
∑

i ω̇ipi = 0.

⇐
⇒ polar duality

Infinitesimal displacement of the facet hyperplanes so that

I facet-origin distances stay the same. (in first order)

I dihedral angles stay the same. (in first order)

show
∑

i Viṅi =
∑

i V̇ini = 0.
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