

[Rigidity of Polyhedral Spheres beyond Triangulations](#page-71-0) University of Warwick

Rigidity of Polyhedral Spheres beyond **TRIANGULATIONS**

Martin Winter

University of Warwick

March 6, 2024

Joint work with Bernd Schulze, Matthias Himmelmann, Albert Zhang

Triangular and polyhedral spheres

Bricard octahedron

University of Warwick · Martin Winter 2 / 29

"A polyhedral sphere is a bunch of polygons glued edge to edge so that they form a topological sphere."

polyhedral graph

- **a** polyhedral sphere $P = (V, E)$ is a 3-connected planar graph.
- Its faces we denote by $F_1, ..., F_m \subset V$.
- \blacktriangleright a **realization** of $\mathcal P$ is a map $\boldsymbol p:V\to\mathbb R^3$ so that the points $p_i,i\in F_k$ lie on a common plane.
- \triangleright in a triangulated sphere all faces are triangles.

Flexing polyhedral spheres

 \blacktriangleright preserving edge lengths but also

 \blacktriangleright preserve planarity of faces

Flexing polyhedral spheres

 \blacktriangleright preserving edge lengths but also

 \blacktriangleright preserve planarity of faces

$$
\#DOFs - \#constraints = 3|V| - (|E| + \sum_{k} (|F_k| - 3)) = 6.
$$

Triangulated Spheres

... good old frameworks

Rigidity of triangulated spheres

Core results

Convex triangulated spheres are globally rigid. $(CAUCHY)$ I Convex triangulated spheres are first-order rigid. (Dehn) $Triangulared spheres$ are generically first-order rigid. $(GLUCK)$ Flexible triangulated spheres exist. (BRICARD, CONNELLY, STEFFEN)

MOVING BEYOND TRIANGULATIONS

Rigidity of general polyhedral spheres

Core results

I Convex polyhedra with fixed face shapes are globally rigid. (CAUCHY)

 (a) iso in higher dimensions) $(ALEXANDROV)$

I Triangulating a convex polyhedron makes it first-order rigid. (ALEXANDROV)

MINKOWSKI SUMS $A + B := \{a + b \mid a \in A, b \in B\}$

MINKOWSKI SUMS $A + B := \{a + b \mid a \in A, b \in B\}$

Only Minkowski sums?

Question: Are all flexible convex polyhedra Minkowski sums?

Notes:

- \blacktriangleright This includes rotating/flexing a proper Minkowski summand.
- Not all Minkowski sums are flexible.

\overline{A} FFINE FLEXES := a flex realized by an affine transformation

Question: Are all affinely flexible polyhedra Minkowski sums?

Theorem. (Himmelmann, Schulze, W., Zhang, 2024+)

The regular dodecahedron is ...

- X not first-order rigid. (5-dimensional space of first-order flexes)
- X not prestress stable.
- ✓ second-order rigid.

No generic global rigidity

Many open questions

Question: (about convex spheres)

- \blacktriangleright Is second order rigidity always sufficient?
- \triangleright Does flexibility need parallel edges?
- \blacktriangleright Is polytope rigidity preserved under affine transformations?

(first-order flexibility is not)

GENERIC first-order rigidity

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$
\text{Real}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \right\}
$$

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$
\text{Real}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ \text{Real-cvx}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ &\langle p_i, n_k \rangle < 1 \text{ if } i \notin F_k \right\}
$$

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$
\text{Real}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ \text{Real-cvx}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ &\langle p_i, n_k \rangle < 1 \text{ if } i \notin F_k \right\}
$$

A finite flex preserves

$$
||p_i - p_j|| \stackrel{!}{=} \ell_{ij} = \text{const} \qquad \text{for } ij \in E
$$

$$
\langle p_i, n_k \rangle \stackrel{!}{=} 1 \qquad \text{for } i \in F_k
$$

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$
\text{Real}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ \text{Real-cvx}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ &\langle p_i, n_k \rangle < 1 \text{ if } i \notin F_k \right\}
$$

A finite flex preserves

$$
||p_i - p_j|| \stackrel{!}{=} \ell_{ij} = \text{const} \qquad \text{for } ij \in E
$$

$$
\langle p_i, n_k \rangle \stackrel{!}{=} 1 \qquad \text{for } i \in F_k
$$

A first-order flex (\dot{p}, \dot{n}) satisfies

$$
\langle p_i - p_j, \dot{p}_i - \dot{p}_j \rangle = 0 \quad \text{for } ij \in E
$$

$$
\langle p_i, \dot{n}_k \rangle + \langle \dot{p}_i, n_k \rangle = 0 \quad \text{for } i \in F_k
$$

THE PROOF

 $-$ the triangular case $-$ "Triangular spheres are generically first-order rigid."

[The Proof](#page-27-0)

$$
\# \text{edges } \left\{ ij \in E \text{ -- } p_i \text{ -- } p_j \text{ -- } p_j \text{ -- } p_i \text{
$$

 $\dot{\boldsymbol{p}}$ is a first-order flex $\iff \mathcal{R}(G, \boldsymbol{p})\dot{\boldsymbol{p}} = 0$

[The Proof](#page-27-0)

[The Proof](#page-27-0)

p˙ is a first-order flex ⇐⇒ R(G, p)p˙ = 0 (G, p) is first-order rigid ⇐⇒ corank R(G, p) = 6

#columns – #rows = $3|V| - |E| = 6 =$ #trivial first-order flexes.

[The Proof](#page-27-0)

STRESSES

$$
\mathcal{R}(G,\boldsymbol{p})^{\top}\boldsymbol{\omega}=0.
$$

$$
\forall i \in V: \sum_{j:i,j \in E} \omega_{ij}(p_j - p_i) = 0.
$$

first-order flexible $\iff \ker \mathcal{R}(G,{\bm p})^\top = \{0\} \iff \exists$ non-zero stress

GENERIC FIRST-ORDER RIGIDITY

 $\mathrm{ReAL}(G)\, :=\, \big\{$ 3-dimensional frameworks on $G\,\big\} \, = \, \mathbb{R}^{3V}$ $\text{FLEX}(G) := \{ \text{ first-order flexible frameworks on } G \}$ $\mathcal{P} = \left\{\, \boldsymbol{p} \in \mathbb{R}^{3V} \mid \mathrm{rank} \, \mathcal{R}(G, \boldsymbol{p}) < |E| \,\right\}$ $\mathcal{L} = \, \big\{ \, \bm{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \, \, \text{for all} \, \, |E| \times |E| \, \, \text{submatrices} \, \, A \, \, \text{of} \, \, \mathcal{R}(G, \bm{p}) \, \big\}.$

[The Proof](#page-27-0)

GENERIC FIRST-ORDER RIGIDITY

 $\mathrm{ReAL}(G)\, :=\, \big\{$ 3-dimensional frameworks on $G\,\big\} \, = \, \mathbb{R}^{3V}$ $\text{FLEX}(G) := \{ \text{ first-order flexible frameworks on } G \}$ $\mathcal{P} = \left\{\, \boldsymbol{p} \in \mathbb{R}^{3V} \mid \mathrm{rank} \, \mathcal{R}(G, \boldsymbol{p}) < |E| \,\right\}$ $\mathcal{L} = \, \big\{ \, \bm{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \, \, \text{for all} \, \, |E| \times |E| \, \, \text{submatrices} \, \, A \, \, \text{of} \, \, \mathcal{R}(G, \bm{p}) \, \big\}.$

- \implies $\text{FLEX}(G) \subseteq \mathbb{R}^{3V}$ is the zero set of polynomials.
- \implies either ${\rm FLEX}(G) = \mathbb{R}^{3V}$ or ${\rm FLEX}(G)$ has measure zero.

[The Proof](#page-27-0)

GENERIC FIRST-ORDER RIGIDITY

 $\mathrm{ReAL}(G)\, :=\, \big\{$ 3-dimensional frameworks on $G\,\big\} \, = \, \mathbb{R}^{3V}$ $\text{FLEX}(G) := \{ \text{ first-order flexible frameworks on } G \}$ $\mathcal{P} = \left\{\, \boldsymbol{p} \in \mathbb{R}^{3V} \mid \mathrm{rank} \, \mathcal{R}(G, \boldsymbol{p}) < |E| \,\right\}$ $\mathcal{L} = \, \big\{ \, \bm{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \, \, \text{for all} \, \, |E| \times |E| \, \, \text{submatrices} \, \, A \, \, \text{of} \, \, \mathcal{R}(G, \bm{p}) \, \big\}.$

- \implies $\text{FLEX}(G) \subseteq \mathbb{R}^{3V}$ is the zero set of polynomials.
- \implies either ${\rm FLEX}(G) = \mathbb{R}^{3V}$ or ${\rm FLEX}(G)$ has measure zero.

Recall: a convex realization is first-order rigid. (DEHN)

$$
\implies \text{FLEX}(G) \neq \mathbb{R}^{3V}.
$$

[The Proof](#page-27-0)

 \implies FLEX(G) has measure zero.
THE PROOF

 $-$ the polyhedral case $-$

"Convex polyhedral spheres are generically first-order rigid."

RIGIDITY MATRIX $\mathcal{R}(P)$

[The Proof](#page-36-0)

RIGIDITY MATRIX $\mathcal{R}(P)$

[The Proof](#page-36-0)

 $\#\textsf{columns}~-~\#\textsf{rows}~=~\big(3|V|+3|F|\big)~-~\big(|E|+|VF|\big)~=~6$

$$
\mathcal{R}(P)^{\top}(\boldsymbol{\omega},\boldsymbol{\alpha})=0
$$

$$
\mathcal{R}(P)^{\!\top\!}(\boldsymbol{\omega},\boldsymbol{\alpha})=0
$$

$$
\mathcal{R}(P)^{\!\top\!}(\boldsymbol{\omega},\boldsymbol{\alpha})=0
$$

Observation: If F_k is triangular face, then $\alpha_{ik} = 0$.

GENERIC RIGIDITY OF POLYHEDRAL SPHERES

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall P$ FLEX(P) has measure zero in REAL-CVX(P).

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall P$ FLEX(P) has measure zero in REAL-CVX(P).

Question: What about potentially non-convex polyhedral spheres?

[The Proof](#page-36-0)

Generic rigidity of polyhedral spheres

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall P$ FLEX(P) has measure zero in REAL-CVX(P).

Question: What about potentially non-convex polyhedral spheres? Strategy:

- 1. Polynomial method: $FLEX(\mathcal{P}) \subseteq REAL(\mathcal{P})$ is a sub-variety.
	- \rightarrow FLEX(P) = REAL(P) or $FLEX(\mathcal{P})$ has measure zero in $REAL(\mathcal{P})$.
- 2. Show: there exists at least one realization that is first-order rigid.

[The Proof](#page-36-0)

Generic rigidity of polyhedral spheres

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall P$ FLEX(P) has measure zero in REAL-CVX(P).

Question: What about potentially non-convex polyhedral spheres?

Strategy:

- 1. Polynomial method: $FLEX(\mathcal{P}) \subseteq REAL-CVX(\mathcal{P})$ is a sub-variety.
	- \longrightarrow FLEX(P) = REAL-CVX(P) or $FLEX(\mathcal{P})$ has measure zero in REAL-CVX(\mathcal{P}).
- 2. Show: there exists at least one convex realization that is first-order rigid.

Theorem. (STEINITZ)

[The Proof](#page-36-0)

 $\mathrm{REAL}\text{-}\mathrm{Cvx}(\mathcal{P})\subset\mathbb{R}^{3V}\times\mathbb{R}^{3F}$ is (an open subset of) a smooth, irreducible, contractible variety of dimension $|E| + 6$.

$$
\text{ReAL}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \left\} \\ \text{ReAL-CVX}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \\ \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \left\} \end{aligned}
$$

$$
\begin{aligned} \text{FLEX}(\mathcal{P}) &:= \left\{ \left. \left(\boldsymbol{p}, \boldsymbol{n} \right) \in \text{ReAL-CVX}(P) \mid (\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text{ is first-order flexible} \right\} \right. \\ &= \left\{ \left. \left(\boldsymbol{p}, \boldsymbol{n} \right) \in \text{ReAL-CVX}(P) \mid \text{rank } \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) < |E| + |VF| \right. \right\} \end{aligned}
$$

- \implies FLEX(G) \subseteq REAL-CVX(P) is the zero set of polynomials.
- \implies either $FLEX(\mathcal{P}) = REAL-CVX(P)$ or $FLEX(\mathcal{P})$ has measure zero in $REAL-CVX(\mathcal{P})$.

$$
\text{ReAL}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \left\} \\ \text{ReAL-CVX}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \\ \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \left\} \end{aligned}
$$

$$
\begin{aligned} \text{FLEX}(\mathcal{P}) &:= \left\{ \left. \left(\boldsymbol{p}, \boldsymbol{n} \right) \in \text{ReAL-CVX}(P) \mid (\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text{ is first-order flexible} \right\} \right. \\ &= \left\{ \left. \left(\boldsymbol{p}, \boldsymbol{n} \right) \in \text{ReAL-CVX}(P) \mid \text{rank } \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) < |E| + |VF| \right. \right\} \end{aligned}
$$

- \implies FLEX(G) \subset REAL-CVX(P) is the zero set of polynomials.
- \implies either $FLEX(\mathcal{P}) = REAL-CVX(P)$ or $FLEX(\mathcal{P})$ has measure zero in $REAL-CVX(\mathcal{P})$.

It remains to show: there exists a first-order rigid convex realization.

THE PROOF

– proving existence – "There exists at least one first-order rigid realization."

Decreasing the edge number by contraction:

Theorem. (TUTTE)

[The Proof](#page-48-0)

If $G \neq K_4$ is 3-connected, there is an edge $e \in E$ for which G/e is 3-connected.

Induction base:

[The Proof](#page-48-0)

 \blacktriangleright $|E| = 6$ (simplex) is clearly rigid.

Induction step:

- ► Choose an edge $e \in E$ for which G_P/e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ► Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- Show: if each P_i has a non-zero stress, so does P' . $\frac{1}{2}$
 \longrightarrow some P_i must be first-order rigid

 \longrightarrow some P_i must be first-order rigid.

Induction base:

[The Proof](#page-48-0)

 \blacktriangleright $|E| = 6$ (simplex) is clearly rigid.

Induction step:

- \triangleright Choose an edge $e \in E$ for which G_P/e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ? ► Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- **?** In Show: if each P_i has a non-zero stress, so does P' . $\frac{1}{2}$
 \longrightarrow some P_i must be first-order rigid

 \rightarrow some P_i must be first-order rigid.

STRESSES SURVIVE CONTRACTION

Given a sequence $P_1,P_2,P_3,... \longrightarrow P'$ realizing the contracting $\hat{\imath} \hat{j} \longrightarrow \hat{\hat{y}}$.

Lemma.

[The Proof](#page-48-0)

If each P_n has a non-zero stress $(\boldsymbol{\omega}^n,\boldsymbol{\alpha}^n)$, then P' also has a non-zero stress $(\boldsymbol{\omega}', \boldsymbol{\alpha}')$.

$$
\omega_{ij}^n \longrightarrow \omega_{ij}' \qquad \text{if } i, j \notin \{\hat{\imath}, \hat{\jmath}\}
$$

$$
\omega_{ii}^n + \omega_{ij}^n \longrightarrow \omega_{i\hat{\jmath}}' \qquad \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\}
$$

$$
\omega_{ij}^n \longrightarrow -
$$

$$
\alpha_{ik}^n \longrightarrow \alpha_{ik}' \qquad \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\}
$$

$$
\alpha_{ik}^n + \alpha_{jk}^n \longrightarrow \alpha_{\hat{g}k}'
$$

STRESSES SURVIVE CONTRACTION

Given a sequence $P_1,P_2,P_3,... \longrightarrow P'$ realizing the contracting $\hat{\imath} \hat{j} \longrightarrow \hat{\hat{y}}$.

Lemma.

[The Proof](#page-48-0)

If each P_n has a non-zero stress $(\boldsymbol{\omega}^n,\boldsymbol{\alpha}^n)$, then P' also has a non-zero stress $(\boldsymbol{\omega}', \boldsymbol{\alpha}')$.

$$
\omega_{ij}^{n} \longrightarrow \omega_{ij}' \qquad \text{if } i, j \notin \{\hat{\imath}, \hat{\jmath}\}
$$

$$
\omega_{ii}^{n} + \omega_{ij}^{n} \longrightarrow \omega_{i\hat{\jmath}}' \qquad \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\}
$$

$$
\omega_{ij}^{n} \longrightarrow -
$$

$$
\alpha_{ik}^{n} \longrightarrow \alpha_{ik}' \qquad \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\}
$$

$$
\alpha_{ik}^{n} + \alpha_{jk}^{n} \longrightarrow \alpha_{\hat{g}k}'
$$

Note: if F_k is a triangle, then $\alpha_{ik} = 0$.

Induction base:

[The Proof](#page-48-0)

 \blacktriangleright $|E| = 6$ (simplex) is clearly rigid.

Induction step:

- \triangleright Choose an edge $e \in E$ for which G_P/e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ? ► Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- \checkmark ► Show: if each P_i has a non-zero stress, so does P' . $\frac{1}{2}$
 \longrightarrow some P_i must be first-order rigid

 \rightarrow some P_i must be first-order rigid.

CONTRACTING EDGES GEOMETRICALLY

How to find the sequence $P_1, P_2, P_3, ... \longrightarrow P^{\prime}$?

Maxwell-Cremona correspondence

"Polyhedral realizations are in 1:1 relation with planar stressed frameworks."

 \blacktriangleright Tutte embedding

[The Proof](#page-48-0)

"One can prescribe the stresses of a planar framework."

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Induction base:

[The Proof](#page-48-0)

 \blacktriangleright $|E| = 6$ (simplex) is clearly rigid.

Induction step:

- \triangleright Choose an edge $e \in E$ for which G_P/e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- \blacklozenge \blacktriangleright Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'.$
- \checkmark ► Show: if each P_i has a non-zero stress, so does P' . $\frac{1}{2}$
 \longrightarrow some P_i must be first-order rigid

 \rightarrow some P_i must be first-order rigid.

Induction base:

[The Proof](#page-48-0)

 \blacktriangleright $|E| = 6$ (simplex) is clearly rigid.

Induction step:

- ► Choose an edge $e \in E$ for which G_P/e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- \blacklozenge \blacktriangleright Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'.$
- \checkmark ► Show: if each P_i has a non-zero stress, so does P' . $\frac{1}{2}$
 \longrightarrow some P_i must be first-order rigid

 \longrightarrow some P_i must be first-order rigid.

Many open questions

Higher dimensions

Question: Are polytopes of dimension $d \geq 4$ generically first-order rigid?

Problems:

- In first-order rigid \neq no non-zero stresses
- \blacktriangleright realization space is no longer contractible/connected/irreducible/...
- \triangleright there are no useful analogues of Maxwell-Cremona/Tutte/...

Higher dimensions

Question: Are polytopes of dimension $d \geq 4$ generically first-order rigid?

Problems:

- In first-order rigid \neq no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- \triangleright there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

Fix a generic realization $P \subset \mathbb{R}^4$.

 \rightarrow all facets (= 3-dimensional faces) are generic.

 \blacktriangleright Suppose P has a first-order flex.

−→ induces a first-order flex on each facet.

- Ince the facets are generic $+$ 3D, the flexes on each facet must be trivial.
- **Show: the flex of P must therefore be trivial as well.** $\left(\text{Cauchy, DEHN}\right)$

Higher dimensions

Question: Are polytopes of dimension $d \geq 4$ generically first-order rigid?

Problems:

- In first-order rigid \neq no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- \triangleright there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

- Fix a generic realization $P \subset \mathbb{R}^4$.
- **?** \longrightarrow all facets (= 3-dimensional faces) are generic.
	- \blacktriangleright Suppose P has a first-order flex.

→ induces a first-order flex on each facet.

- \triangleright Since the facets are generic $+$ 3D, the flexes on each facet must be trivial.
- ? Show: the flex of P must therefore be trivial as well. $(CAUCHY, DEHN)$

BEYOND CONVEXITY

$$
\text{Real}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ \text{Real-cvx}(\mathcal{P}) := \left\{ \begin{aligned} &\boldsymbol{p} \colon V \to \mathbb{R}^3 \\ &\boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \right| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \left\} \\ &\langle p_i, n_k \rangle < 1 \text{ if } i \notin F_k \right\}
$$

Question: Is $REAL(\mathcal{P})$ irreducible?

or, alternatively,

Question: Can we run the "convex proof" once per irreducible component of $\text{REAL}(\mathcal{P})$?

Thank you.

