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Triangular and polyhedral spheres
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Non-convex and self-intersecting

Jessen's icosahedron

Bricard octahedron
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Polyhedral spheres

“A polyhedral sphere is a bunch of polygons glued edge to edge so
that they form a topological sphere.”

I a polyhedral sphere P = (V,E) is a

polyhedral graph︷ ︸︸ ︷
3-connected planar graph.

I its faces we denote by F1, ..., Fm ⊂ V .

I a realization of P is a map p : V → R3 so that the points pi, i ∈ Fk lie on
a common plane.

I in a triangulated sphere all faces are triangles.
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Flexing polyhedral spheres

✘

I preserving edge lengths

but also
I preserve planarity of faces

#DOFs − #constraints = 3|V | −
(
|E|+

∑
k

(
|Fk| − 3

))
= 6.
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Triangulated Spheres

... good old frameworks



Triangulated Spheres

Rigidity of triangulated spheres

Core results

I Convex triangulated spheres are globally rigid. (Cauchy)

I Convex triangulated spheres are first-order rigid. (Dehn)

I Triangulated spheres are generically first-order rigid. (Gluck)

I Flexible triangulated spheres exist. (Bricard, Connelly, Steffen)
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Moving beyond
triangulations



Moving beyond triangulations

Rigidity of general polyhedral spheres

Core results

I Convex polyhedra with fixed face shapes are globally rigid. (Cauchy)

(also in higher dimensions) (Alexandrov)

I Triangulating a convex polyhedron makes it first-order rigid. (Alexandrov)
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Moving beyond triangulations

Minkowski sums A+B := {a+ b | a ∈ A, b ∈ B}
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Moving beyond triangulations

Only Minkowski sums?

Question: Are all flexible convex polyhedra Minkowski sums?

Notes:

I This includes rotating/flexing a proper Minkowski summand.

I Not all Minkowski sums are flexible.

+ =
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Moving beyond triangulations

Affine flexes := a flex realized by an affine transformation

Question: Are all affinely flexible polyhedra Minkowski sums?
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Moving beyond triangulations

Is the regular dodecahedron rigid?

Theorem. (Himmelmann, Schulze, W., Zhang, 2024+)

The regular dodecahedron is ...

7 not first-order rigid. (5-dimensional space of first-order flexes)

7 not prestress stable.

3 second-order rigid.
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Moving beyond triangulations

No generic global rigidity
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Moving beyond triangulations

Many open questions

Question: (about convex spheres)

I Is second order rigidity always sufficient?

I Does flexibility need parallel edges?

I Is polytope rigidity preserved under affine transformations?

(first-order flexibility is not)
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Generic
first-order rigidity



Generic first-order rigidity

Main result

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

Real(P) :=
{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

}

Real-cvx(P) :=
{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

〈pi, nk〉 < 1 if i 6∈ Fk

}

A finite flex preserves

‖pi − pj‖
!
= `ij = const for ij ∈ E

〈pi, nk〉
!
= 1 for i ∈ Fk

A first-order flex (ṗ, ṅ) satisfies

〈pi − pj , ṗi − ṗj〉 = 0 for ij ∈ E
〈pi, ṅk〉+ 〈ṗi, nk〉 = 0 for i ∈ Fk
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The Proof

– the triangular case –

“Triangular spheres are generically first-order rigid.”



The Proof

Rigidity matrix R(G,p)

ṗ is a first-order flex ⇐⇒ R(G,p) ṗ = 0

(G,p) is first-order rigid ⇐⇒ corankR(G,p) = 6

#columns−#rows = 3|V | − |E| = 6 = #trivial first-order flexes.
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(G,p) is first-order rigid ⇐⇒ corankR(G,p) = 6

#columns−#rows = 3|V | − |E| = 6 = #trivial first-order flexes.

University of Warwick · Martin Winter 14 / 29



The Proof

Rigidity matrix R(G,p)
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The Proof

Stresses

R(G,p)>ω = 0.

∀i ∈ V :
∑

j:ij∈E
ωij(pj − pi) = 0.

first-order flexible ⇐⇒ kerR(G,p)> = {0} ⇐⇒ ∃ non-zero stress
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The Proof

Generic first-order rigidity

Real(G) :=
{

3-dimensional frameworks on G
}

= R3V

Flex(G) :=
{

first-order flexible frameworks on G
}

=
{
p ∈ R3V | rankR(G,p) < |E|

}
=
{
p ∈ R3V | det(A) = 0 for all |E| × |E| submatrices A of R(G,p)

}
.

=⇒ Flex(G) ⊆ R3V is the zero set of polynomials.

=⇒ either Flex(G) = R3V or Flex(G) has measure zero.

Recall: a convex realization is first-order rigid. (Dehn)

=⇒ Flex(G) 6= R3V .

=⇒ Flex(G) has measure zero.
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The Proof

– the polyhedral case –

“Convex polyhedral spheres are generically first-order rigid.”



The Proof

Rigidity matrix R(P )

#columns − #rows =
(
3|V |+ 3|F |

)
−
(
|E|+ |VF |

)
= 6
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The Proof

Stresses

R(P )>(ω,α) = 0

∀i ∈ V : 0 =
∑

j:ij∈E
ωij(pj − pi) +

∑
k:i∈Fk

αiknk

∀k ∈ F : 0 =
∑
i∈Fk

αikpi

Observation: If Fk is triangular face, then αik = 0.
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The Proof

Generic rigidity of polyhedral spheres

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

∀P Flex(P) has measure zero in Real-cvx(P).

Question: What about potentially non-convex polyhedral spheres?

Strategy:

1. Polynomial method: Flex(P) ⊆ Real(P) is a sub-variety.

−→ Flex(P) = Real(P) or
Flex(P) has measure zero in Real(P).

2. Show: there exists at least one realization that is first-order rigid.

Theorem. (Steinitz)

Real-cvx(P) ⊂ R3V × R3F is (an open subset of) a smooth, irreducible,
contractible variety of dimension |E|+ 6.
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The Proof

Reduction to existence

Real(P) :=
{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

}
Real-cvx(P) :=

{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

〈pi, nk〉 < 1 if i 6∈ Fk

}

Flex(P) :=
{
(p,n) ∈ Real-cvx(P ) | (P,p,n) is first-order flexible

}
=
{
(p,n) ∈ Real-cvx(P ) | rankR(P,p,n) < |E|+ |VF |

}
=⇒ Flex(G) ⊆ Real-cvx(P ) is the zero set of polynomials.

=⇒ either Flex(P) = Real-cvx(P )
or Flex(P) has measure zero in Real-cvx(P ).

It remains to show: there exists a first-order rigid convex realization.

University of Warwick · Martin Winter 20 / 29



The Proof

Reduction to existence

Real(P) :=
{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

}
Real-cvx(P) :=

{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

〈pi, nk〉 < 1 if i 6∈ Fk

}

Flex(P) :=
{
(p,n) ∈ Real-cvx(P ) | (P,p,n) is first-order flexible

}
=
{
(p,n) ∈ Real-cvx(P ) | rankR(P,p,n) < |E|+ |VF |

}
=⇒ Flex(G) ⊆ Real-cvx(P ) is the zero set of polynomials.

=⇒ either Flex(P) = Real-cvx(P )
or Flex(P) has measure zero in Real-cvx(P ).

It remains to show: there exists a first-order rigid convex realization.

University of Warwick · Martin Winter 20 / 29



The Proof

– proving existence –

“There exists at least one first-order rigid realization.”



The Proof

Strategy: induction on #edges

Decreasing the edge number by contraction:

Theorem. (Tutte)

If G 6= K4 is 3-connected, there is an edge e ∈ E for which G/e is 3-connected.
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The Proof

Strategy: induction on #edges

Induction base:

I |E| = 6 (simplex) is clearly rigid.

Induction step:

I Choose an edge e ∈ E for which GP /e is polyhedral.

I Induction hypothesis: there is a first-order rigid realizations P ′ of GP /e.

I? Choose a sequence of realizations P1, P2, P3, ... −→ P ′.

I? Show: if each Pi has a non-zero stress, so does P ′.  
−→ some Pi must be first-order rigid.

...
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The Proof

Stresses survive contraction

Given a sequence P1, P2, P3, ... −→ P ′ realizing the contracting ı̂̂ −→ ˆ̂ı.

Lemma.

If each Pn has a non-zero stress (ωn,αn), then P ′ also has a non-zero
stress (ω′,α′).

ωn
ij −→ ω′ij if i, j 6∈ {ı̂, ̂}

ωn
iı̂ + ωn

î −→ ω′
iˆ̂ı

if i 6∈ {ı̂, ̂}

ωn
ı̂̂ −→ −

αn
ik −→ α′ik if i 6∈ {ı̂, ̂}

αn
ı̂k + αn

̂k −→ α′ˆ̂ık

Note: if Fk is a triangle, then αik = 0.
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The Proof

Strategy: induction on #edges

Induction base:

I |E| = 6 (simplex) is clearly rigid.

Induction step:

I Choose an edge e ∈ E for which GP /e is polyhedral.

I Induction hypothesis: there is a first-order rigid realizations P ′ of GP /e.

I? Choose a sequence of realizations P1, P2, P3, ... −→ P ′.

I3 Show: if each Pi has a non-zero stress, so does P ′.  
−→ some Pi must be first-order rigid.

...
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The Proof

Contracting edges geometrically

How to find the sequence P1, P2, P3, ... −→ P ′‘?

...

I Maxwell-Cremona correspondence

“Polyhedral realizations are in 1:1 relation with planar stressed frameworks.”

I Tutte embedding

“One can prescribe the stresses of a planar framework.”
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The Proof

Project and lift

Input: P ′

Output: sequence P1, P2, P3, ... −→ P ′
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Many open questions



Many open questions

Higher dimensions

Question: Are polytopes of dimension d ≥ 4 generically first-order rigid?

Problems:

I first-order rigid 6= no non-zero stresses

I realization space is no longer contractible/connected/irreducible/...

I there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

I Fix a generic realization P ⊂ R4.

? −→ all facets (= 3-dimensional faces) are generic.

I Suppose P has a first-order flex.

−→ induces a first-order flex on each facet.

I Since the facets are generic + 3D, the flexes on each facet must be trivial.

I? Show: the flex of P must therefore be trivial as well. (Cauchy, Dehn)
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Many open questions

Beyond convexity

Real(P) :=
{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

}
Real-cvx(P) :=

{
p : V → R3

n : F → R3 \ {0}

∣∣∣∣ 〈pi, nk〉 = 1 if i ∈ Fk

〈pi, nk〉 < 1 if i 6∈ Fk

}

Question: Is Real(P) irreducible?

or, alternatively,

Question: Can we run the “convex proof” once per irreducible component
of Real(P)?
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Thank you.
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