

Rigidity of Polyhedral Spheres beyond Triangulations University of Warwick

# RIGIDITY OF POLYHEDRAL SPHERES BEYOND TRIANGULATIONS

Martin Winter

University of Warwick

March 6, 2024

Joint work with Bernd Schulze, Matthias Himmelmann, Albert Zhang

### TRIANGULAR AND POLYHEDRAL SPHERES







Bricard octahedron

### POLYHEDRAL SPHERES

"A polyhedral sphere is a bunch of polygons glued edge to edge so that they form a topological sphere."

polyhedral graph

- ▶ a **polyhedral sphere**  $\mathcal{P} = (V, E)$  is a 3-connected planar graph.
- its faces we denote by  $F_1, ..., F_m \subset V$ .
- a realization of  $\mathcal{P}$  is a map  $p: V \to \mathbb{R}^3$  so that the points  $p_i, i \in F_k$  lie on a common plane.
- in a **triangulated sphere** all faces are triangles.

### FLEXING POLYHEDRAL SPHERES



preserving edge lengths
but also

preserve planarity of faces

### FLEXING POLYHEDRAL SPHERES



preserving edge lengths
but also

preserve planarity of faces

$$\# \mathsf{DOFs} - \# \mathsf{constraints} = 3|V| - \left(|E| + \sum_{k} \left(|F_k| - 3\right)\right) = 6.$$

# TRIANGULATED SPHERES

... good old frameworks

#### RIGIDITY OF TRIANGULATED SPHERES

#### Core results

<u>Convex</u> triangulated spheres are <u>globally</u> rigid. (CAUCHY)
<u>Convex</u> triangulated spheres are <u>first-order</u> rigid. (DEHN)
Triangulated spheres are <u>generically first-order</u> rigid. (GLUCK)
Flexible triangulated spheres exist. (BRICARD, CONNELLY, STEFFEN)



MOVING BEYOND TRIANGULATIONS

#### RIGIDITY OF GENERAL POLYHEDRAL SPHERES

#### Core results

Convex polyhedra with <u>fixed face shapes</u> are <u>globally</u> rigid.

(also in higher dimensions) (ALEXANDROV)

(Cauchy)

Triangulating a convex polyhedron makes it <u>first-order</u> rigid. (ALEXANDROV)









### MINKOWSKI SUMS $A + B := \{a + b \mid a \in A, b \in B\}$



### **MINKOWSKI SUMS** $A + B := \{a + b \mid a \in A, b \in B\}$



# Only Minkowski sums?

Question: Are all flexible convex polyhedra Minkowski sums?

#### Notes:

- This includes rotating/flexing a proper Minkowski summand.
- Not all Minkowski sums are flexible.



#### AFFINE FLEXES := a flex realized by an affine transformation



Question: Are all affinely flexible polyhedra Minkowski sums?

## Is the regular dodecahedron rigid?



#### IS THE REGULAR DODECAHEDRON RIGID?



## Is the regular dodecahedron rigid?



#### IS THE REGULAR DODECAHEDRON RIGID?



Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024+)

The regular dodecahedron is ...

- X <u>not</u> first-order rigid. (5-dimensional space of first-order flexes)
- X <u>not</u> prestress stable.
- ✓ second-order rigid.

#### NO GENERIC GLOBAL RIGIDITY



## MANY OPEN QUESTIONS

#### Question: (about convex spheres)

- Is second order rigidity always sufficient?
- Does flexibility need parallel edges?
- Is polytope rigidity preserved under affine transformations?

(first-order flexibility is not)

# GENERIC FIRST-ORDER RIGIDITY

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024)

Convex polyhedral spheres are generically first-order rigid.

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$\operatorname{REAL}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \end{array} \right\}$$

#### Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$\begin{aligned} \operatorname{REAL}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \end{aligned} \right\} \\ \operatorname{REAL-CVX}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\} \end{aligned}$$

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$\begin{aligned} \operatorname{REAL}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \end{aligned} \right\} \\ \operatorname{REAL-CVX}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \diamond p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\} \end{aligned}$$

A finite flex preserves

$$\begin{split} \|p_i - p_j\| \stackrel{!}{=} \ell_{ij} = \text{const} & \quad \text{for } ij \in E \\ \langle p_i, n_k \rangle \stackrel{!}{=} 1 & \quad \quad \text{for } i \in F_k \end{split}$$

#### Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$\begin{aligned} \operatorname{REAL}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \end{aligned} \right\} \\ \operatorname{REAL-CVX}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \diamond p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\} \end{aligned}$$

A finite flex preserves

$$\begin{split} \|p_i - p_j\| \stackrel{!}{=} \ell_{ij} = \text{const} & \text{ for } ij \in E \\ \langle p_i, n_k \rangle \stackrel{!}{=} 1 & \text{ for } i \in F_k \end{split}$$

A first-order flex  $(\dot{\boldsymbol{p}}, \dot{\boldsymbol{n}})$  satisfies

$$\begin{aligned} \langle p_i - p_j, \dot{p}_i - \dot{p}_j \rangle &= 0 & \text{ for } ij \in E \\ \langle p_i, \dot{n}_k \rangle + \langle \dot{p}_i, n_k \rangle &= 0 & \text{ for } i \in F_k \end{aligned}$$

# $\overline{\text{The}} \overline{\text{Proof}}$

- the triangular case -

"Triangular spheres are generically first-order rigid."

The Proof

$$\# \text{edges} \left\{ \begin{array}{ccc} i \in V & j \in V \\ i j \in V & j \in V \\ \hline & & & \\ i j \in E & - \left( \begin{array}{ccc} & & & \\ & & & \\ - & p_i - p_j & - & p_j - p_i & - \\ & & & \\ & & & \\ & & & \\ \end{array} \right) = \mathcal{R}(G, p)$$

 $\dot{\boldsymbol{p}}$  is a first-order flex  $\iff \mathcal{R}(G, \boldsymbol{p}) \dot{\boldsymbol{p}} = 0$ 

The Proof



(G, p) is first-order rigid  $\iff \operatorname{corank} \mathcal{R}(G, p) = 6$ 

The Proof

(G, p) is first-order rigid  $\iff \operatorname{corank} \mathcal{R}(G, p) = 6$ 

#columns – #rows = 3|V| - |E| = 6 = #trivial first-order flexes.

The Proof



#columns - #rows = 3|V| - |E| = 6 = #trivial first-order flexes.



## Stresses

$$\mathcal{R}(G, \boldsymbol{p})^{\mathsf{T}}\boldsymbol{\omega} = 0.$$

$$\forall i \in V \colon \sum_{j:ij \in E} \omega_{ij} (p_j - p_i) = 0.$$



first-order flexible  $\iff \ker \mathcal{R}(G, \boldsymbol{p})^{\!\top} = \{0\} \iff \exists \text{ non-zero stress}$ 

#### GENERIC FIRST-ORDER RIGIDITY

$$\begin{split} \operatorname{REAL}(G) &:= \left\{ \text{ 3-dimensional frameworks on } G \right\} = \mathbb{R}^{3V} \\ \operatorname{FLEX}(G) &:= \left\{ \text{ first-order flexible frameworks on } G \right\} \\ &= \left\{ \mathbf{p} \in \mathbb{R}^{3V} \mid \operatorname{rank} \mathcal{R}(G, \mathbf{p}) < |E| \right\} \\ &= \left\{ \mathbf{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \text{ for all } |E| \times |E| \text{ submatrices } A \text{ of } \mathcal{R}(G, \mathbf{p}) \right\}. \end{split}$$

The Proof

#### GENERIC FIRST-ORDER RIGIDITY

$$\begin{split} \operatorname{REAL}(G) &:= \left\{ \text{ 3-dimensional frameworks on } G \right\} = \mathbb{R}^{3V} \\ \operatorname{FLEX}(G) &:= \left\{ \text{ first-order flexible frameworks on } G \right\} \\ &= \left\{ \mathbf{p} \in \mathbb{R}^{3V} \mid \operatorname{rank} \mathcal{R}(G, \mathbf{p}) < |E| \right\} \\ &= \left\{ \mathbf{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \text{ for all } |E| \times |E| \text{ submatrices } A \text{ of } \mathcal{R}(G, \mathbf{p}) \right\}. \end{split}$$

- $\implies$  FLEX $(G) \subseteq \mathbb{R}^{3V}$  is the zero set of polynomials.
- $\implies$  either  $FLEX(G) = \mathbb{R}^{3V}$  or FLEX(G) has measure zero.

The Proof

#### GENERIC FIRST-ORDER RIGIDITY

$$\begin{split} \operatorname{REAL}(G) &:= \left\{ \text{ 3-dimensional frameworks on } G \right\} = \mathbb{R}^{3V} \\ \operatorname{FLEX}(G) &:= \left\{ \text{ first-order flexible frameworks on } G \right\} \\ &= \left\{ \mathbf{p} \in \mathbb{R}^{3V} \mid \operatorname{rank} \mathcal{R}(G, \mathbf{p}) < |E| \right\} \\ &= \left\{ \mathbf{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \text{ for all } |E| \times |E| \text{ submatrices } A \text{ of } \mathcal{R}(G, \mathbf{p}) \right\}. \end{split}$$

- $\implies$  FLEX $(G) \subseteq \mathbb{R}^{3V}$  is the zero set of polynomials.
- $\implies$  either  $FLEX(G) = \mathbb{R}^{3V}$  or FLEX(G) has measure zero.

**Recall:** a convex realization is first-order rigid. (DEHN)

$$\implies$$
 FLEX $(G) \neq \mathbb{R}^{3V}$ .

The Proof

 $\implies$  FLEX(G) has measure zero.

# THE PROOF

- the polyhedral case -

"Convex polyhedral spheres are generically first-order rigid."

## RIGIDITY MATRIX $\mathcal{R}(P)$



## RIGIDITY MATRIX $\mathcal{R}(P)$





$$\mathcal{R}(P)^{\mathsf{T}}(\boldsymbol{\omega},\boldsymbol{\alpha}) = 0$$





$$\mathcal{R}(P)^{\mathsf{T}}(\boldsymbol{\omega},\boldsymbol{\alpha}) = 0$$





$$\mathcal{R}(P)^{\mathsf{T}}(\boldsymbol{\omega}, \boldsymbol{\alpha}) = 0$$



**Observation:** If  $F_k$  is *triangular* face, then  $\alpha_{ik} = 0$ .



### GENERIC RIGIDITY OF POLYHEDRAL SPHERES

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{FLex}(\mathcal{P}) \text{ has measure zero in } \text{Real-CVX}(\mathcal{P}).$ 



Theorem. (HIMMELMANN, SCHULZE, W., ZHANG)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{FLEX}(\mathcal{P}) \text{ has measure zero in REAL-CVX}(\mathcal{P}).$ 

Question: What about potentially non-convex polyhedral spheres?

### GENERIC RIGIDITY OF POLYHEDRAL SPHERES

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{FLEX}(\mathcal{P}) \text{ has measure zero in } \text{REAL-CVX}(\mathcal{P}).$ 

**Question:** What about <u>potentially non-convex</u> polyhedral spheres? **Strategy:** 

- 1. Polynomial method:  $FLEX(\mathcal{P}) \subseteq REAL(\mathcal{P})$  is a sub-variety.
  - $\begin{array}{ll} \longrightarrow \ \mathrm{FLEx}(\mathcal{P}) = \mathrm{REAL}(\mathcal{P}) \ \text{ or } \\ \mathrm{FLEx}(\mathcal{P}) \ \text{has measure zero in } \mathrm{REAL}(\mathcal{P}). \end{array}$
- 2. Show: there exists at least one realization that is first-order rigid.

### GENERIC RIGIDITY OF POLYHEDRAL SPHERES

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{FLEX}(\mathcal{P}) \text{ has measure zero in } \text{REAL-CVX}(\mathcal{P}).$ 

**Question:** What about <u>potentially non-convex</u> polyhedral spheres? **Strategy:** 

- 1. Polynomial method:  $FLEX(\mathcal{P}) \subseteq REAL-CVX(\mathcal{P})$  is a sub-variety.
- 2. Show: there exists at least one convex realization that is first-order rigid.

#### Theorem. (STEINITZ)

The Proof

REAL-CVX( $\mathcal{P}$ )  $\subset \mathbb{R}^{3V} \times \mathbb{R}^{3F}$  is (an open subset of) a smooth, irreducible, contractible variety of dimension |E| + 6.



$$\begin{aligned} \operatorname{REAL}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \end{aligned} \right\} \\ \operatorname{REAL-CVX}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\} \end{aligned}$$

$$\begin{aligned} \operatorname{FLEX}(\mathcal{P}) &:= \big\{ \left( \boldsymbol{p}, \boldsymbol{n} \right) \in \operatorname{REAL-CVX}(P) \mid (\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text{ is first-order flexible} \big\} \\ &= \big\{ \left( \boldsymbol{p}, \boldsymbol{n} \right) \in \operatorname{REAL-CVX}(P) \mid \operatorname{rank} \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) < |E| + |VF| \big\} \end{aligned}$$

- $\implies$  FLEX $(G) \subseteq$  REAL-CVX(P) is the zero set of polynomials.
- $\implies \text{ either } FLEX(\mathcal{P}) = REAL-CVX(P)$ or  $FLEX(\mathcal{P})$  has measure zero in REAL-CVX(P).



### REDUCTION TO EXISTENCE

$$\begin{aligned} \operatorname{REAL}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \end{aligned} \right\} \\ \operatorname{REAL-CVX}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\} \end{aligned}$$

$$\begin{aligned} \operatorname{FLEX}(\mathcal{P}) &:= \big\{ \left( \boldsymbol{p}, \boldsymbol{n} \right) \in \operatorname{REAL-CVX}(P) \mid (\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text{ is first-order flexible} \big\} \\ &= \big\{ \left( \boldsymbol{p}, \boldsymbol{n} \right) \in \operatorname{REAL-CVX}(P) \mid \operatorname{rank} \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) < |E| + |VF| \big\} \end{aligned}$$

- $\implies$  FLEX $(G) \subseteq$  REAL-CVX(P) is the zero set of polynomials.
- $\implies \text{ either } FLEX(\mathcal{P}) = \text{REAL-CVX}(P)$ or  $FLEX(\mathcal{P})$  has measure zero in REAL-CVX(P).

It remains to show: there exists a first-order rigid convex realization.

# $\overline{\text{The}} \overline{\text{Proof}}$

- proving existence -

"There exists at least one first-order rigid realization."

Decreasing the edge number by **contraction**:



Theorem. (TUTTE)

The Proof

If  $G \neq K_4$  is 3-connected, there is an edge  $e \in E$  for which G/e is 3-connected.

Induction base:

The Proof

▶ |E| = 6 (simplex) is clearly rigid.

#### Induction step:

- Choose an edge  $e \in E$  for which  $G_P/e$  is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P' of  $G_P/e$ .
- Choose a sequence of realizations  $P_1, P_2, P_3, \dots \longrightarrow P'$ .
- Show: if each  $P_i$  has a non-zero stress, so does P'.

 $\longrightarrow$  some  $P_i$  must be first-order rigid.



Induction base:

The Proof

▶ |E| = 6 (simplex) is clearly rigid.

#### Induction step:

- Choose an edge  $e \in E$  for which  $G_P/e$  is polyhedral.
- lnduction hypothesis: there is a first-order rigid realizations P' of  $G_P/e$ .
- ? Choose a sequence of realizations  $P_1, P_2, P_3, \dots \longrightarrow P'$ .
- ? Show: if each  $P_i$  has a non-zero stress, so does P'. 4

 $\longrightarrow$  some  $P_i$  must be first-order rigid.



### STRESSES SURVIVE CONTRACTION

Given a sequence  $P_1, P_2, P_3, \dots \longrightarrow P'$  realizing the contracting  $\hat{i}\hat{j} \longrightarrow \hat{\hat{y}}$ .

#### Lemma.

The Proof

If each  $P_n$  has a non-zero stress  $(\omega^n, \alpha^n)$ , then P' also has a non-zero stress  $(\omega', \alpha')$ .

$$\begin{split} \omega_{ij}^n &\longrightarrow \omega_{ij}' & \text{if } i, j \notin \{\hat{\imath}, \hat{\jmath}\} \\ \omega_{i\hat{\imath}}^n &+ \omega_{i\hat{\jmath}}^n &\longrightarrow \omega_{i\hat{\jmath}}' & \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\} \\ \omega_{\hat{\imath}\hat{\jmath}}^n &\longrightarrow - \\ \alpha_{ik}^n &\longrightarrow \alpha_{ik}' & \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\} \\ \alpha_{ik}^n &+ \alpha_{jk}^n &\longrightarrow \alpha_{ik}' \\ \end{split}$$

### STRESSES SURVIVE CONTRACTION

Given a sequence  $P_1, P_2, P_3, \dots \longrightarrow P'$  realizing the contracting  $\hat{i}\hat{j} \longrightarrow \hat{\hat{y}}$ .

#### Lemma.

The Proof

If each  $P_n$  has a non-zero stress  $(\pmb{\omega}^n,\pmb{\alpha}^n)$ , then P' also has a non-zero stress  $(\pmb{\omega}',\pmb{\alpha}').$ 

$$\begin{split} & \omega_{ij}^n \longrightarrow \omega_{ij}' \qquad \text{if } i, j \not\in \{\hat{\imath}, \hat{\jmath}\} \\ & \omega_{i\hat{\imath}}^n + \omega_{i\hat{\jmath}}^n \longrightarrow \omega_{i\hat{\jmath}}' \qquad \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\} \\ & \omega_{\hat{\imath}\hat{\jmath}}^n \longrightarrow - \\ & \alpha_{ik}^n \longrightarrow \alpha_{ik}' \qquad \text{if } i \notin \{\hat{\imath}, \hat{\jmath}\} \\ & \alpha_{ik}^n \longrightarrow \alpha_{jk}' \\ \end{split}$$



**Note:** if  $F_k$  is a triangle, then  $\alpha_{ik} = 0$ .

Induction base:

The Proof

▶ |E| = 6 (simplex) is clearly rigid.

#### Induction step:

- Choose an edge  $e \in E$  for which  $G_P/e$  is polyhedral.
- lnduction hypothesis: there is a first-order rigid realizations P' of  $G_P/e$ .
- ? Choose a sequence of realizations  $P_1, P_2, P_3, \dots \longrightarrow P'$ .
- ✓ ► Show: if each  $P_i$  has a non-zero stress, so does P'.  $\frac{1}{4}$

 $\longrightarrow$  some  $P_i$  must be first-order rigid.



### CONTRACTING EDGES GEOMETRICALLY

How to find the sequence  $P_1, P_2, P_3, \dots \longrightarrow P'$ ?



Maxwell-Cremona correspondence

"Polyhedral realizations are in 1:1 relation with planar stressed frameworks."

Tutte embedding

The Proof

"One can prescribe the stresses of a planar framework."



### $PROJECT \ AND \ LIFT$

Input: P'



### PROJECT AND LIFT

Input: P'





Input: P'





Input: P'





Input: P'







Input: P'





Input: P'





Input: P'



Induction base:

The Proof

▶ |E| = 6 (simplex) is clearly rigid.

#### Induction step:

- Choose an edge  $e \in E$  for which  $G_P/e$  is polyhedral.
- lnduction hypothesis: there is a first-order rigid realizations P' of  $G_P/e$ .
- ✓ ► Choose a sequence of realizations  $P_1, P_2, P_3, ... \longrightarrow P'$ .
- ✓ ► Show: if each  $P_i$  has a non-zero stress, so does P'.  $\frac{1}{4}$

 $\longrightarrow$  some  $P_i$  must be first-order rigid.



Induction base:

The Proof

▶ |E| = 6 (simplex) is clearly rigid.

#### Induction step:

- Choose an edge  $e \in E$  for which  $G_P/e$  is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P' of  $G_P/e$ .
- ✓ ► Choose a sequence of realizations  $P_1, P_2, P_3, ... \longrightarrow P'$ .
- ✓ ► Show: if each  $P_i$  has a non-zero stress, so does P'.  $\frac{1}{4}$

 $\longrightarrow$  some  $P_i$  must be first-order rigid.



# MANY OPEN QUESTIONS

### HIGHER DIMENSIONS

**Question:** Are polytopes of dimension  $d \ge 4$  generically first-order rigid?

#### Problems:

- first-order rigid  $\neq$  no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- ▶ there are no useful analogues of Maxwell-Cremona/Tutte/...

### HIGHER DIMENSIONS

**Question:** Are polytopes of dimension  $d \ge 4$  generically first-order rigid?

**Problems:** 

- first-order rigid  $\neq$  no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- ▶ there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

- Fix a generic realization  $P \subset \mathbb{R}^4$ .
  - $\rightarrow$  all facets (= 3-dimensional faces) are generic.
- Suppose *P* has a first-order flex.

 $\longrightarrow$  induces a first-order flex on each facet.

- Since the facets are generic + 3D, the flexes on each facet must be trivial.
- Show: the flex of P must therefore be trivial as well. (CAUCHY, DEHN)

### HIGHER DIMENSIONS

**Question:** Are polytopes of dimension  $d \ge 4$  generically first-order rigid?

**Problems:** 

?

- first-order rigid  $\neq$  no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- ▶ there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

- Fix a generic realization  $P \subset \mathbb{R}^4$ .
  - $\rightarrow$  all facets (= 3-dimensional faces) are generic.
- ► Suppose *P* has a first-order flex.
  - $\longrightarrow$  induces a first-order flex on each facet.
- Since the facets are generic + 3D, the flexes on each facet must be trivial.
- **?** ► Show: the flex of *P* must therefore be trivial as well. (CAUCHY, DEHN)

### BEYOND CONVEXITY

$$\begin{aligned} \operatorname{REAL}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \end{aligned} \right\} \\ \operatorname{REAL-CVX}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\} \end{aligned}$$

Question: Is  $\operatorname{REAL}(\mathcal{P})$  irreducible?

or, alternatively,

Question: Can we run the "convex proof" once per irreducible component of  $\mathrm{REAL}(\mathcal{P})?$ 

# Thank you.

