Adjoint degrees and scissors congruence for polytopes

Martin Winter

(joint work with Tom Baumbach, Ansgar Freyer and Julian Weigert)

TU Berlin + MPI

24. April, 2025

HILBERT'S THIRD PROBLEM

Given any two polyhedra P and Q of equal volume, is it always possible to dissect P into finitely many polyhedral pieces $P_1, ..., P_n$, which can then be reassembled to yield Q?

- ▶ d = 2: true by the Wallace–Bolyai–Gerwien theorem
- ► d = 3: false as shown by Max Dehn using the *Dehn invariant* (takes values in $\mathbb{R} \otimes_{\mathbb{Z}} (\mathbb{R}/2\pi\mathbb{Z})$)
- Marked the beginning of valuation theory

VALUATIONS

Whenever P, Q, $P \cap Q$ and $P \cup Q$ are polytopes a **valuation** satisfies

$$\phi(P) + \phi(Q) = \phi(P \cup Q) + \phi(P \cap Q)$$

... but what we actually care about:

$$\phi(P_1 \cup \cdots \cup P_n) = \phi(P_1) + \cdots + \phi(P_n).$$

Examples:

▶ ...

- volume
- surface area measure
- Euler characteristic
- mixed volumes
- number of contained lattice points

Let $\nu(P)$ be the surface area measure of $P \subset \mathbb{R}^d$ on \mathbb{S}^{d-1} . Define

$$\phi(P) := \nu(P) - \nu(-P)$$

Martin Winter (with Tom Baumbach, Ansgar Freyer and Julian Weigert)

Let $\nu(P)$ be the surface area measure of $P \subset \mathbb{R}^d$ on \mathbb{S}^{d-1} . Define

$$\phi(P) := \nu(P) - \nu(-P)$$

 $\blacktriangleright \phi(P_1 \cup \cdots \cup P_n) = \phi(P_1) + \cdots + \phi(P_n) \quad (i.e. \ \phi \text{ is valuative})$

Let $\nu(P)$ be the surface area measure of $P \subset \mathbb{R}^d$ on \mathbb{S}^{d-1} . Define

$$\phi(P) := \nu(P) - \nu(-P)$$

▶ $\phi(P_1 \cup \cdots \cup P_n) = \phi(P_1) + \cdots + \phi(P_n)$ (i.e. ϕ is valuative) ▶ $\phi(P) = 0$ if and only if P is centrally symmetric.

EVERYBODY'S NEW FAVOURITE VALUATION

The canonical form

The **canonical form** of a polytope $P \subset \mathbb{R}^d$ is the rational function given by

$$\Omega(P;x) := \operatorname{vol}(P-x)^{\circ} = \frac{\operatorname{adj}_P(x)}{\prod_F \ell_F(x)}.$$

- ▶ the product $\prod_F \ell_F$ is over all facets $F \subset P$.
- $\blacktriangleright \ \ell_F(x) := \langle u_F, x \rangle h_F$ is the facet defining linear form
- u_k is the <u>unit</u> normal vector of F
- ▶ adj_P is the **adjoint** of P (which is a polynomial)

The canonical form

The **canonical form** of a polytope $P \subset \mathbb{R}^d$ is the rational function given by

$$\Omega(P;x) := \operatorname{vol}(P-x)^{\circ} = \frac{\operatorname{adj}_P(x)}{\prod_F \ell_F(x)}.$$

- ▶ the product $\prod_F \ell_F$ is over all facets $F \subset P$.
- ▶ $\ell_F(x) := \langle u_F, x \rangle h_F$ is the facet defining linear form
- u_k is the <u>unit</u> normal vector of F
- ▶ adj_P is the **adjoint** of P (which is a polynomial)

Theorem.

The canonical form is valuative:

$$\Omega(P_1 \cup \cdots \cup P_n; x) = \Omega(P_1; x) + \cdots + \Omega(P_n; x).$$

Adjoint degrees

- ▶ Generically (or projectively) the adjoint adj_P has degree m d 1. (where m = #facets)
- ► This is <u>not</u> true in general.

We call this defficiency in degree the **degree drop** of P:

$$\deg \operatorname{adj}_P = m - d - 1 - \operatorname{drop}(P)$$

Example: for the *d*-cube \Box^d we have

$$\Omega(\square^d; x) = \frac{\text{some constant}}{\prod_i (1 - x_i^2)} \quad \Longrightarrow \quad \operatorname{drop}(\square^d) = d - 1.$$

Adjoint degrees and composition

Lemma.

 $\implies s' > s$

$$\operatorname{drop}(P_1 \cup \cdots \cup P_n) \ge \min_i \operatorname{drop}(P_i).$$

Proof. (for two polytopes P and Q)

▶ With $s := \min\{\operatorname{drop}(P), \operatorname{drop}(Q)\}$ and $s' := \operatorname{drop}(P \cup Q)$ we have

(Note: proving this projectively is much easier)

П

Questions:

- ▶ What characterizes the class of polytopes with drop *s*?
- How to tell the drop of a polytope from geometric/combinatorial characteristics?

DROP IS INHERITED BY FACES

Lemma.

For a facet F of P holds

$$\operatorname{drop}(F) \ge \operatorname{drop}(P) - 1$$

with equality if and only of P has a facet parallel to F.

Proof.

$$m_F - (d-1) - 1 - s_F \leq m - d - 1 - s$$
 $rac{\mathrm{adj}_F(x)}{\prod_{G < F} \ell_G(x)} = \Omega(F; x) = rac{\mathrm{adj}_P(x)|_F}{\prod_{G
eq F} \ell_G(x)|_F}$
 $m_F \qquad m - \begin{cases} 2 & ext{has parallel facet} \\ 1 & ext{no parallel facet} \end{cases}$
 $s_F \geq s - 1$

CONSEQUENCES

Lemma.

A *d*-polytope has

 $\operatorname{drop}(P) \le d - 1.$

Proof.

- d = 1: line segment has drop([0, 1]) = 0.
- ▶ a *d*-polytope has $drop(P) \le drop(F) + 1$ for each facet *F*.

- we already saw that cubes have maximal drop.
- Question: which polytopes have maximal degree drop?

PROJECTIONS

Lemma.

If π is a linear projection onto a $(d-1)\mbox{-}dimensional subspace, then$

$$\operatorname{drop}\left(\pi(P)\right) \ge \operatorname{drop}(P) - 1.$$

PROJECTIONS, PRODUCTS AND SUMS

Lemma.

If π is a linear projection onto a $(d-1)\mbox{-}dimensional subspace, then$

$$\operatorname{drop}\left(\pi(P)\right) \ge \operatorname{drop}(P) - 1.$$

Lemma.

$$drop(P_1 \times \dots \times P_n) = \sum_i drop(P_i) + n - 1$$
$$drop(P_1 + \dots + P_n) \ge \sum_i drop(P_i) + (d - 1) - \sum_i (d_i - 1)$$

Lemma.

A centrally symmetric polygon P has drop(P) = 1. (which is maximal)

Proof I.

a cs polygon decomposes into parallelograms

Lemma.

A centrally symmetric polygon P has drop(P) = 1. (which is maximal)

Proof I.

a cs polygon decomposes into parallelograms

Note: zonotopes also decompose into "skew cubes" (parallelepipedes).

Lemma.

Zonotopes have maximal degree drop d-1.

Lemma.

A centrally symmetric polygon P has drop(P) = 1.

Proof II.

- $\blacktriangleright \ \ \, \mbox{We have } \Omega(P;x)=\Omega(P;-x) \ \mbox{due to symmetry}.$
- ▶ Since $\Omega = \operatorname{adj}_P / \prod_F \ell_F$, we have adj_P and $\prod_F \ell_F$ both even or both odd.
- Since P is cs, $\deg \prod_F \ell_F = m = 2\bar{m}$ is even.
- ▶ Hence $\deg \operatorname{adj}_P = 2\bar{m} 2 1 \operatorname{drop}(P)$ is even only if $\operatorname{drop}(P) = 1$.

Lemma.

A centrally symmetric polygon P has drop(P) = 1.

Proof II.

- $\blacktriangleright \ \ \, \mbox{We have } \Omega(P;x)=\Omega(P;-x) \ \mbox{due to symmetry}.$
- ▶ Since $\Omega = \operatorname{adj}_P / \prod_F \ell_F$, we have adj_P and $\prod_F \ell_F$ both even or both odd.
- Since P is cs, $\deg \prod_F \ell_F = m = 2\bar{m}$ is even.
- ▶ Hence $\deg \operatorname{adj}_P = 2\bar{m} 2 1 \operatorname{drop}(P)$ is even only if $\operatorname{drop}(P) = 1$.

Note: Argument applies in all dimensions.

Lemma.

If P is centrally symmetric, then $\deg \operatorname{adj}_P$ is even. In other words

$$drop(P) \text{ is } \begin{cases} even & \text{if } d \text{ is odd} \\ odd & \text{if } d \text{ is even} \end{cases}$$

and in particular, cs polytopes in even dimension have $drop(P) \ge 1$.

IS THERE ANYTHING ELSE?

Observation: for maximal drop facets must come in parallel pairs.

$$\phi(P) = \phi(P_1 \cup \cdots \cup P_n)$$

= $\phi(P_1) + \cdots + \phi(P_n)$
= $\phi(P_1 + t_1) + \cdots + \phi(P_n + t_n)$
= $\phi((P_1 + t_1) \cup \cdots \cup (P_n + t_n)) = \phi(Q)$

$$\phi(P) = \phi(P_1 \cup \cdots \cup P_n)$$

= $\phi(P_1) + \cdots + \phi(P_n)$
= $\phi(P_1 + t_1) + \cdots + \phi(P_n + t_n)$
= $\phi((P_1 + t_1) \cup \cdots \cup (P_n + t_n)) = \phi(Q)$

Scissors congruence

$$\phi(P) = \phi(P_1 \cup \cdots \cup P_n)$$

= $\phi(P_1) + \cdots + \phi(P_n)$
= $\phi(P_1 + t_1) + \cdots + \phi(P_n + t_n)$
= $\phi((P_1 + t_1) \cup \cdots \cup (P_n + t_n)) = \phi(Q)$

TRANSLATION SCISSORS CONGRUENCE

$$\phi(P) = \phi(P_1 \cup \dots \cup P_n)$$

= $\phi(P_1) + \dots + \phi(P_n)$
= $\phi(P_1 + t_1) + \dots + \phi(P_n + t_n)$
= $\phi((P_1 + t_1) \cup \dots \cup (P_n + t_n)) = \phi(Q)$

OUR NEW FAVOURITE (TRANSLATION-INVARIANT)

VALUATION

The view from infinity

$$\begin{split} \Omega(P;x_0,x) &:= \frac{\mathrm{adj}_P(x_0,x)}{\prod_F \ell_F(x_0,x)} & \leftarrow \text{homogenized to degree } m - d - 1 \\ \leftarrow \text{homogenized to degree } m \end{split}$$
$$\begin{aligned} \Omega_0(P;x) &:= \Omega(P;x_0,x)|_{x_0=0} = \frac{\mathrm{adj}_P(x_0,x)|_{x_0=0}}{\prod_F \langle u_F,x \rangle}. \end{split}$$

One can view this as

- restricting Ω to the hyperplane at infinite (given by $x_0 = 0$).
- ▶ restricting numerator (resp. denominator) to the monomials of degree m d 1 (resp. m).

The view from infinity

$$\begin{split} \Omega(P;x_0,x) &:= rac{\mathrm{adj}_P(x_0,x)}{\prod_F \ell_F(x_0,x)} & \leftarrow ext{homogenized to degree } m - d - 1 \ \leftarrow ext{homogenized to degree } m \end{split}$$
 $\Omega_0(P;x) &:= \Omega(P;x_0,x)|_{x_0=0} = rac{\mathrm{adj}_P(x_0,x)|_{x_0=0}}{\prod_F \langle u_F,x
angle}. \end{split}$

One can view this as

- restricting Ω to the hyperplane at infinite (given by $x_0 = 0$).
- ▶ restricting numerator (resp. denominator) to the monomials of degree m d 1 (resp. m).

Lemma.

 Ω_0 is a translation-invariant valuation. (but Ω is not)

Proof idea. Translation preserve the leading coefficients of a polynomial:

$$p(x) = \sum_{n} p_n x^n \quad \longrightarrow \quad p(x+t) = \sum_{n} p_n (x+t)^n.$$

How to use Ω_0

Observation: $\Omega_0(P) = 0$ if and only if drop(P) < 0.

Theorem.

If P and Q are translation scissors congruent, then

 $\operatorname{drop}(P) < 0 \quad \Longleftrightarrow \quad \operatorname{drop}(Q) > 0.$

But ...

- We can only distinguish drop vs. no-drop.
- ▶ We lose all information about the precise value of the degree drop

A NOTE ON EXTENSION

Note: Ω and Ω_0 are initially defined only on convex polytopes.

Well-known extension theorems apply:

- ▶ Ω_0 can be extended to <u>lower-dimensional polytopes</u>: $\Omega_0(P) = 0$

A NOTE ON EXTENSION

Note: Ω and Ω_0 are initially defined only on convex polytopes.

Well-known extension theorems apply:

- Ω_0 can be extended to <u>lower-dimensional polytopes</u>: $\Omega_0(P) = 0$

A NOTE ON EXTENSION

Note: Ω and Ω_0 are initially defined only on convex polytopes.

Well-known extension theorems apply:

- ▶ Ω_0 can be extended to <u>lower-dimensional polytopes</u>: $\Omega_0(P) = 0$

Central symmetry $\Leftrightarrow drop = 1$

Theorem.

For d = 2 we have drop(P) > 0 if and only if P is centrally-symmetric.

Proof.

 \blacktriangleright every edge needs a parallel edge \implies must be a 2n-gon

Central symmetry $\Leftrightarrow drop = 1$

Theorem.

For d = 2 we have drop(P) > 0 if and only if P is centrally-symmetric.

Proof.

• every edge needs a parallel edge \implies must be a 2n-gon

• $\Omega_0(P) = 0$ and this is preserved in all steps 4

Theorem.

P has maximal degree drop drop(P) = d - 1 iff P is a zonotope.

Proof.

- ▶ if *P* has maximal drop, then so do the faces.
- all faces centrally symmetric \implies zonotope.

Question: Are zonotopes only translation scissors congruent to zonotopes? or stronger, is the precise degree drop preserved under TSC?

Yes and no

Theorem.

In dimension $d \leq 3$ translation scissors congruence preserves the degree drop.

Proof. (for d = 3)

- if $\operatorname{drop}(P) = 0$ then $\operatorname{drop}(Q) = 0$.
- ▶ if drop(P) = 2 then P is a zonotop, hence centrally symmetric. Both drop > 0 and cs are preserved by TSC. But cs 3-polytopes have an even drop. Hence drop(Q) = 2 as well.

$$\blacktriangleright \operatorname{drop}(P) = 1 \implies \operatorname{drop}(Q) = 1 \text{ follows from } \operatorname{drop} \in \{0, 1, 2\}.$$

This is not true in dimensions $d \ge 4$.

Example: 4-cube and 24-cell.

HOMOGENEITY

Homogeneity of Ω_0

A valuation is *k*-homogeneous if for $\lambda > 0$ holds

 $\phi(\lambda P) = \lambda^k \phi(P).$

Lemma.

 Ω_0 is 1-homogeneous. (but Ω is not)

$$\begin{aligned} & \textit{Proof.} \quad \Omega(\lambda P; x) = \operatorname{vol}(\lambda P - x)^{\circ} \\ &= \operatorname{vol}(\lambda (P - x/\lambda))^{\circ} \\ &= \operatorname{vol}(\lambda^{-1}(P - x/\lambda)^{\circ}) \\ &= \lambda^{-d} \operatorname{vol}(P - x/\lambda)^{\circ} = \lambda^{-d} \Omega(P; x/\lambda). \end{aligned}$$
$$& \Omega_{0}(\lambda P; x) = \lambda^{-d} \Omega(P; 0, x/\lambda) = \lambda^{-d} \frac{\operatorname{adj}_{P}(0, x/\lambda)}{\prod_{F} \ell_{F}(0, x/\lambda)} \\ &= \lambda^{-d} \frac{\lambda^{-(m-d-1)} \operatorname{adj}_{P}(0, x)}{\lambda^{-m} \prod_{F} \ell_{F}(0, x)} = \lambda \frac{\operatorname{adj}_{P}(0, x)}{\prod_{F} \ell_{F}(0, x)} = \lambda \Omega_{0}(P; x). \end{aligned}$$

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is Minkowski additive:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is Minkowski additive:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is Minkowski additive:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is Minkowski additive:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

Theorem.

If P is a centrally-symmetric polytope of odd dimension with drop(P) > 0, then each half Q of a central dissection has drop(Q) > 0 as well.

McMullen's decomposition

Theorem. (MCMULLEN)

If Ω_0 is translation-invariant, 1-homogeneous and weakly continuous, then there is a valuation ϕ on (d-1)-cones so that

$$\Omega_0(P) = \sum_{e \subset P} \operatorname{len}(e)\phi(N_P(e)).$$

Questions:

- How to verify weak continuity?
- How to determine the valuation ϕ ?

Theorem.

For d = 2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\mathrm{len}(e)}{\langle x, u_e \rangle}.$$

Theorem.

For d = 2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

Case study: the triangle

$$\begin{aligned} \frac{\mathrm{adj}_{\Delta}}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} &= -\frac{1}{\|x\|^2} \Big(\frac{\ell_1}{\langle x, u_1 \rangle} + \frac{\ell_2}{\langle x, u_2 \rangle} + \frac{\ell_3}{\langle x, u_3 \rangle} \Big) \\ &= -\frac{1}{\|x\|^2} \frac{\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} \end{aligned}$$

Theorem.

For d = 2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

Case study: the triangle

$$\begin{split} \frac{\mathrm{adj}_{\Delta}}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} &= -\frac{1}{\|x\|^2} \Big(\frac{\ell_1}{\langle x, u_1 \rangle} + \frac{\ell_2}{\langle x, u_2 \rangle} + \frac{\ell_3}{\langle x, u_3 \rangle} \Big) \\ &= -\frac{1}{\|x\|^2} \frac{\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} \end{split}$$

Theorem.

For d = 2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

Case study: the triangle

$$\begin{split} \frac{\mathrm{adj}_{\Delta}}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} &= -\frac{1}{\|x\|^2} \Big(\frac{\ell_1}{\langle x, u_1 \rangle} + \frac{\ell_2}{\langle x, u_2 \rangle} + \frac{\ell_3}{\langle x, u_3 \rangle} \Big) \\ &= -\frac{1}{\|x\|^2} \frac{\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} \\ \\ \mathrm{adj}_{\Delta} &= -\frac{1}{\|x\|^2} \Big(\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle \Big) \end{split}$$

Theorem.

For d = 2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

Case study: the triangle

$$\begin{split} \frac{\mathrm{adj}_{\Delta}}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} &= -\frac{1}{\|x\|^2} \Big(\frac{\ell_1}{\langle x, u_1 \rangle} + \frac{\ell_2}{\langle x, u_2 \rangle} + \frac{\ell_3}{\langle x, u_3 \rangle} \Big) \\ &= -\frac{1}{\|x\|^2} \frac{\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle}{\langle x, u_1 \rangle \langle x, u_2 \rangle \langle x, u_3 \rangle} \\ \\ \mathrm{adj}_{\Delta} &= -\frac{1}{\|x\|^2} \Big(\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle \Big) \\ &= \frac{\mathrm{Area}(\Delta)}{\mathrm{CircR}(\Delta)}. \end{split}$$

Martin Winter (with Tom Baumbach, Ansgar Freyer and Julian Weigert)

OPEN QUESTIONS

Conjecture.

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \operatorname{len}(e) \,\Omega\big(T_P(e)\big).$$

Question

How else to characterize polytopes with a fixed degree drop?

Question

What is the relation between Ω_0 and the Hadwiger invariants?

Thank you.

