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HILBERT’S THIRD PROBLEM

Given any two polyhedra P and @ of equal volume, is it always possible
to dissect P into finitely many polyhedral pieces P, ..., P,, which can
then be reassembled to yield Q?

d = 2: true by the Wallace-Bolyai—Gerwien theorem
d = 3: false as shown by Max Dehn using the Dehn invariant

Marked the beginning of valuation theory




VALUATIONS

Whenever P, Q, PN Q and P U Q are polytopes a valuation satisfies

(P)+(Q) = ¢(PUQ)+¢(PNQ)

... but what we actually care about:

¢(P1U"'Upn):¢(P1)+"'+¢(Pn)-

Examples:

>

vvyyVvyVvVyy

volume

surface area measure
Euler characteristic
mixed volumes

number of contained lattice points
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A CENTRALLY-SYMMETRIC PUZZLE
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A CENTRALLY-SYMMETRIC PUZZLE

Let v(P) be the surface area measure of P C R? on S?~!. Define

¢(P) :=v(P) —v(=P)
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A CENTRALLY-SYMMETRIC PUZZLE

Let v(P) be the surface area measure of P C R? on S?~!. Define
H(P) = v(P) — v(—P)

PP UP,)=¢(P1)+ -+ ¢(Py) (e ¢ is valuative)
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A CENTRALLY-SYMMETRIC PUZZLE

Let v(P) be the surface area measure of P C R? on S?~!. Define
B(P) == v(P) — v(~P)

PP UP,)=¢(P1)+ -+ ¢(Py) (e ¢ is valuative)
> ¢(P) =0 if and only if P is centrally symmetric.
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EVERYBODY’S NEW
FAVOURITE VALUATION



THE CANONICAL FORM

The canonical form of a polytope P C R? is the rational function given by

Q(P;x) :=vol(P —x)° = M.
[Irtr(x)
> the product [ ¢F is over all facets F' C P.
> lp(x):= (up,x) — hp is the facet defining linear form
>y is the unit normal vector of F'
> adjp is the adjoint of P (which is a polynomial)
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THE CANONICAL FORM

The canonical form of a polytope P C R? is the rational function given by

QP 2) = vol(P — z)° = Up(®).

[1- lp(r)

> the product [ ¢F is over all facets F' C P.

> lp(x):= (up,x) — hp is the facet defining linear form
>y is the unit normal vector of F'

> adjp is the adjoint of P (which is a polynomial)

Theorem.

The canonical form is valuative:

QPLY---UP;x)=QP;x)+ -+ QPy; ).
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ADJOINT DEGREES

> Generically (or projectively) the adjoint adjp has degree m —d — 1.
(where m = #facets)

> This is not true in general.

v

We call this defficiency in degree the degree drop of P:
degadjp, =m—d—1— drop(P)

Example: for the d-cube (0% we have

some constant
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ADJOINT DEGREES AND COMPOSITION
Lemma.

drop(Py U --- U P,) > mindrop(F;).
K2

Proof. (for two polytopes P and Q)
> With s := min{drop(P),drop(Q)} and s’ := drop(P U Q) we have

<

(mp —d—1—135)+mqg
=(mg—-d—1—3s)+mp

< < =(mp+mqg)—d—1—s
mp—d—1—s mg—-d—1—s = (mpug —d—1-15)+2 mpug —d—1—¢
adJP + adJQ . HFCQ £F adJP+HFCP €F a.dJQ L adijQ
HFCP lp HFCQ lyp HFCP lp HFCQ lp HFCPUQ lyp
mp meq mp +mg = mpyqg + 2 mpuQ
= s’ >s (Note: proving this projectively is much easier) [
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Questions:
» What characterizes the class of polytopes with drop s?

> How to tell the drop of a polytope from geometric/combinatorial
characteristics?
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DROP IS INHERITED BY FACES

Lemma.
For a facet I’ of P holds

drop(F') > drop(P) — 1

with equality if and only of P has a facet parallel to F'.

Proof.
mp —(d—1)—1—sp <m-d—1-s
dj dj
adjp(z) = Q(F;z) = adjp(z)|r
HG<F fg(I) HG;éF eG(l‘”F
mg _— 2 has parallel facet
1 no parallel facet
== sp>s—1 O
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CONSEQUENCES

Lemma.

A d-polytope has
drop(P) < d —1.

Proof.
> d = 1: line segment has drop([0, 1]) = 0.
> a d-polytope has drop(P) < drop(F) + 1 for each facet F'. O

> we already saw that cubes have maximal drop.
> Question: which polytopes have maximal degree drop?
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PROJECTIONS

Lemma.

If 7 is a linear projection onto a (d — 1)-dimensional sub-
space, then

drop (7(P)) > drop(P) — 1.
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PROJECTIONS, PRODUCTS AND SUMS

Lemma.

If 7 is a linear projection onto a (d — 1)-dimensional sub-
space, then

drop (7(P)) > drop(P) — 1.
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CENTRALLY SYMMETRIC POLYGONS

Lemma.
A centrally symmetric polygon P has drop(P) = 1. (which is maximal)

Proof |I.

> a cs polygon decomposes into parallelograms O
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CENTRALLY SYMMETRIC POLYGONS

Lemma.
A centrally symmetric polygon P has drop(P) = 1. (which is maximal)

Proof |I.

> a cs polygon decomposes into parallelograms O

Note: zonotopes also decompose into “skew cubes” (parallelepipedes).

Lemma.

Zonotopes have maximal degree drop d — 1.
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CENTRALLY SYMMETRIC POLYGONS

Lemma.
A centrally symmetric polygon P has drop(P) = 1.

Proof II.
> We have Q(P;z) = Q(P; —z) due to symmetry.
> Since @ = adjp /[ £r, we have adjp and [[ £r both even or both odd.
> Since P is cs, deg [ {r = m = 2m is even.
> Hence degadjp = 2m — 2 — 1 — drop(P) is even only if drop(P) = 1. O
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CENTRALLY SYMMETRIC POLYGONS

Lemma.

A centrally symmetric polygon P has drop(P) = 1.

Proof I1.
We have Q(P;z) = Q(P; —z) due to symmetry.
Since Q = adjp /[ £r, we have adjp and [ £F both even or both odd.
Since P is cs, deg [[ {r = m = 2m is even.

Hence degadjp, = 2m — 2 — 1 — drop(P) is even only if drop(P) = 1.
Note: Argument applies in all dimensions.

Lemma.

If P is centrally symmetric, then degadjp is even. In other words

even ifd is odd

d P) i
rop(P) is {odd if d is even

and in particular, cs polytopes in even dimension have drop(P) > 1.



IS THERE ANYTHING ELSE?

Observation: for maximal drop facets must come in parallel pairs.
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¢(P)

o(PY---UP,)

o(Pr) + ¢()

(P + tl) -+ ¢( tn)
G((PL+t1) U (P, + tn)) = 6(Q)
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¢(P)

o(PY---UP,)

= ¢(P1) + ¢()

¢(P + tl) -+ ¢( tn)
G((PL+t1) U (P, + tn)) = 6(Q)

=1l
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SCISSORS CONGRUENCE

~~ =
P(P) = o(P1 UP)
f(ﬁ(Pl) ¢( )
= o(P +t1) +¢( tn)
:¢(Pl+t1 '(Pn+tn)):¢(Q)
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TRANSLATION SCISSORS CONGRUENCE

(

(P)+ -+ o(F)

(P +t) + ---+¢(Pn+tn)
=9

U (Pn + tn)) = ¢(Q)

™ -
+
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OUR NEW FAVOURITE
(TRANSLATION-INVARIANT)

VALUATION



THE VIEW FROM INFINITY

QP ) adjp(zg,z) <« homogenized to degree m — d — 1
120,%) 1= =

T [I7¢r(xo,x) < homogenized to degree m
a‘de(x(% ‘7/‘)|x0=0

[ (ur, )

Oo(Pix) = QP; 20, )| sg=0 =

One can view this as
> restricting € to the hyperplane at infinite (given by zg = 0).

> restricting numerator (resp. denominator) to the monomials of degree
m —d —1 (resp. m).
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THE VIEW FROM INFINITY

QP ) adjp(zg,z) <+ homogenized to degree m — d — 1
120,%) 1= =

T I1z£€r(zo,z) < homogenized to degree m
&djp(l'o, 93)|a:0:0

[ (ur, )

Oo(Pix) = QP; 20, )| sg=0 =

One can view this as
> restricting € to the hyperplane at infinite (given by zg = 0).

> restricting numerator (resp. denominator) to the monomials of degree
m —d —1 (resp. m).

Lemma.
Qg is a translation-invariant valuation.  (but Q) /s not)

Proof idea. Translation preserve the leading coefficients of a polynomial:

:anx" — plx+t)= anm—i—t
n
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How TO USE (g

Observation: Qy(P) = 0 if and only if drop(P) < 0.
Theorem.

If P and Q) are translation scissors congruent, then

drop(P) <0 <= drop(Q) > 0.

But ...
» We can only distinguish drop vs. no-drop.
> We lose all information about the precise value of the degree drop
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A NOTE ON EXTENSION

Note: Q and 2 are initially defined only on convex polytopes.

Well-known extension theorems apply:

> )y can be extended to arbitrary unions P, U---U P,

—— non-convex, non-connected, etc.

> )y can be extended to Z-linear combinations of polytopes
— weighted polytopes, negative polytopes, etc.

> Qo can be extended to lower-dimensional polytopes: 25(P) =0
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Well-known extension theorems apply:

> )y can be extended to arbitrary unions P, U---U P,

—— non-convex, non-connected, etc.
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A NOTE ON EXTENSION

Note: Q and 2 are initially defined only on convex polytopes.

Well-known extension theorems apply:

> )y can be extended to arbitrary unions P, U---U P,

—— non-convex, non-connected, etc.

> )y can be extended to Z-linear combinations of polytopes
— weighted polytopes, negative polytopes, etc.

> Qo can be extended to lower-dimensional polytopes: 25(P) =0
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CENTRAL SYMMETRY < drop = 1

Theorem.
For d = 2 we have drop(P) > 0 if and only if P is centrally-symmetric.

Proof.
> every edge needs a parallel edge = must be a 2n-gon

OO

> Qo(P) =0 and this is preserved in all steps é O
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CENTRAL SYMMETRY < drop = 1

Theorem.
For d = 2 we have drop(P) > 0 if and only if P is centrally-symmetric.
Proof.

> every edge needs a parallel edge = must be a 2n-gon
> Qo(P) =0 and this is preserved in all steps é O

Theorem.
P has maximal degree drop drop(P) = d — 1 iff P is a zonotope.
Proof.

> if P has maximal drop, then so do the faces.

> all faces centrally symmetric = zonotope. O
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Question: Are zonotopes only translation scissors congruent to zonotopes?
or stronger, is the precise degree drop preserved under TSC?

m Baumbach, Ansgar Freyer and Julian Weigert)



YES AND NO

Theorem.

In dimension d < 3 translation scissors congruence preserves the degree drop.

Proof. (for d = 3)
> if drop(P) = 0 then drop(Q) = 0.

> if drop(P) = 2 then P is a zonotop, hence centrally symmetric. Both
drop > 0 and cs are preserved by TSC. But cs 3-polytopes have an even
drop. Hence drop(Q) = 2 as well.

> drop(P) =1 = drop(Q) =1 follows from drop € {0, 1, 2}. O

This is not true in dimensions d > 4.

Example: 4-cube and 24-cell.
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HOMOGENEITY



HOMOGENEITY OF £}
A valuation is k-homogeneous if for A > 0 holds
P(AP) = \(P).

Lemma.
Qo is I-homogeneous.  (but O is not)
Proof.  Q(AP;z) = vol(AP — z)°
= vol(A(P — z/)\))°
=vol AN (P —z/)\)°)
= A"4vol(P — z/N)° = A1 Q(P;2/\).
_q adjp(0,z/A)
[1p£r(0,2/X)
AT M= adj (0, 1) ) adjp(0, z)
A= g £r(0, ) [ ¢r(0,2)

Qo(AP;z) = A1 Q(P;0,2/\) = X

=A

= )\Qo(P, I)
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WHY HOMOGENEITY IS GREAT!

Theorem. (McMuLLEN)
If Qg is 1I-homogeneous, then it is Minkowski additive:

Qo(Pr+ -+ P) = Q(P) + - + Q(Py).
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WHY HOMOGENEITY IS GREAT!

Theorem. (McMuLLEN)
If Qg is 1I-homogeneous, then it is Minkowski additive:

Qo(Py+ -+ P)) = Qo(P) + -+ Qo(P).

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.
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WHY HOMOGENEITY IS GREAT!

Theorem. (McMuLLEN)
If Qg is 1I-homogeneous, then it is Minkowski additive:

Qo(P1++Pn):QO(P1)++QO(Pn)

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

N
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WHY HOMOGENEITY IS GREAT!

Theorem. (McMULLEN)

If Qo is I-homogeneous, then it is Minkowski additive:

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

~N

If P is a centrally-symmetric polytope of odd dimension with drop(P) > 0, then
each half Q) of a central dissection has drop(Q) > 0 as well.

Theorem.



MCcMULLEN’S DECOMPOSITION

Theorem. (McMULLEN)

If Qq is translation-invariant, 1-homogeneous and weakly continuous, then there
is a valuation ¢ on (d — 1)-cones so that

Q(P) = ) _ len(e)$(Np(e)).

eCP

Questions:
» How to verify weak continuity?
» How to determine the valuation ¢?
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds

Case study: the triangle
adja 1 5 4o 3
(7 ),

(o) (@, ua (@ uz) 2P (@) | (wus) (@ us
_ 1 ly{x,ug){x, us) + lolx,ur)(x,us) + 3{x, ur){x, us)
[|2]|2 (w, u1) (2, uz) (r, us)
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds

Case study: the triangle
adja 1 5 4o 3
(7 ),

- +
z»ru’1> <.’L‘,’u,2> <.’E,U3

(el

_ 1 ly{x,ug){x, us) + lolx,ur)(x,us) + 3{x, ur){x, us)
[l
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds

Case study: the triangle
adja 1 5 4o 3
(7 ),

- +
.’E,U1> <.’L‘,UQ> <.’E,U3

(el

_ 1 ly{x,ug){x, us) + lolx,ur)(x,us) + 3{x, ur){x, us)
[l

adj = —W(fl@,uz)(%w) 0o, un ) us) + (), 02))
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds

Case study: the triangle
adja 1 5 4o 3
(7 ),

- +
.’E,U1> <.’L‘,UQ> <.’E,U3

(el

_ 1 ly{x,ug){x, us) + lolx,ur)(x,us) + 3{x, ur){x, us)
[l

adj = —W(fl@,uz)(%w) 0o, un ) us) + (), 02))

_ Area(A)
~ CircR(A)’
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OPEN QUESTIONS

Conjecture.
Qo(P; ) ||5U||2 Zlen Tp(e)).

Question

How else to characterize polytopes with a fixed degree drop?

Question

What is the relation between Q4 and the Hadwiger invariants?
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Thank you.




