The structure of 2-level polytopes

 \sim

Martin Winter

TU Berlin

22. January, 2025

2-level polytopes

$$P = \operatorname{conv}\{p_1, \dots, p_n\} \subset \mathbb{R}^d, \ d \ge 0$$

Definition.

- ► Two faces F₁, F₂ ⊆ P are antipodal if they are contained in parallel hyperplanes (*i.e.* there are parallel hyperplanes H₁, H₂ ⊆ ℝ^d with F_i = P ∩ H_i)
- ► A polytope *P* is **2-level** if each antipodal face pair that contains a facet also contains all vertices.

EXAMPLES

dim	0	1	2	3	4	5	6	7	8
2-level	1	1	2	5	19	106	1150	27291	1378453

EXAMPLES

Many 2-level polytopes are constructed from combinatorial objects:

- Hanner polytopes (in relation to cographs)
- order polytopes of posets
- stable set polytopes of perfect graphs + their twisted prisms (= Hansen polytopes)
- spanning tree polytopes of series-parallel graphs
- Birkhoff polytopes (from double stochastic matrices)
- certain matroid base polytopes

Properties

- all faces are 2-level
- closed under products and joins
- #vertices \cdot #facets $\leq d2^{d+1}$
- ▶ are 01-polytopes (if P is d-dimensional then $P \subseteq [0, 1]^d$)

Theorem.

2-level polytopes are precisely the polytopes that can be written as the intersection of a cube with an affine subspace that is spanned by vertices of the cube.

BINARY SCALAR PRODUCTS

Based on empirical evidence it was conjectured that

 $f_0(P) \cdot f_{d-1}(P) \le d2^{d+1}.$

This was eventually proven using **binary scalar product pairs**: $A, B \subset \mathbb{R}^d$

 $\langle a,b\rangle \in \{0,1\},$ for all $a \in A$ and $b \in B$.

Theorem. (KUPAVSKII, WELTGE; 2020)

If $A, B \subseteq \mathbb{R}^d$ is a binary scalar product pair, then $|A| \cdot |B| \le (d+1)2^d$.

BINARY SCALAR PRODUCTS

Theorem. (KUPAVSKII, WELTGE; 2020)

If $A, B \subseteq \mathbb{R}^d$ is a binary scalar product pair, then $|A| \cdot |B| \le (d+1)2^d$.

 $\mathcal{A}_s(P)$... set of spanning antipodal face pairs

Corollary.

For a 2-level polytope holds $f_0(P) \cdot |\mathcal{A}_s(P)| \leq (d+1)2^d$.

Conjectures for centrally symmetric polytopes

CENTRALLY SYMMETRIC POLYTOPES

centrally symmetric $:\iff P = -P$

dim	0	1	2	3	4	5	6	7	8
2-level	1	1	2	5	19	106	1150	27291	1378453
cs 2-level	1	1	1	2	4	13	45	238	1790

Properties

- each facet contains exactly half of the vertices
- each vertex lies in exactly half of the facets
 - \implies closed under polar duality

defining 2-level among cs

- ▶ precisely the section of a cube with linear space spanned by vertices
- ▶ linearly unique (all cs 01-polytopes are linearly unique)
 - \implies linearly invariant geometric properties are combinatorial properties

Kalai's 3^d conjecture

$$s(P) := \mathcal{T}_{h} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$$
-empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

$$s(P) \ge s(d\text{-cube}) = 3^d.$$

Kalai's 3^d conjecture

$$s(P) := \mathcal{T}_{h} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$$
-empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

$$s(P) \ge s(d\text{-cube}) = 3^d.$$

But: cube is not the only minimizer! \rightarrow **Hanner polytopes**

HANNER POLYTOPES

Hanner polytopes are defined recursively:

- (i) start from a line segment.
- (ii) recursively apply Cartesian products ($\times)$ and sums (*)

HANNER POLYTOPES

#Hanner polytopes for $d \ge 1 = 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, \dots$

Kalai's 3^d conjecture

$$s(P) := \mathcal{T}_{h} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$$
-empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

$$s(P) \ge s(d\text{-cube}) = 3^d.$$

But: cube is not the only minimizer! \rightarrow **Hanner polytopes**

Kalai's 3^d conjecture

$$s(P) := \mathcal{T}_{h} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$$
-empty faces

Conjecture. (3^{*d*} conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

 $s(P) \ge s(d\text{-cube}) = 3^d$.

But: cube is not the only minimizer! \rightarrow **Hanner polytopes**

What is known ... ?

- dimension $d \leq 3$ \checkmark easy
- dimension $d = 4 \checkmark$ not so easy (2007)
- ▶ simple/simplicial polytopes ✓ needs a lot of algebra
- without requiring central symmetry \checkmark easy $\rightarrow s(d\text{-simplex}) = 2^d 1$

MAHLER'S CONJECTURE

Mahler volume ... $M(P) := \operatorname{vol}(P) \cdot \operatorname{vol}(P^{\circ})$

Conjecture. (3^d conjecture, MAHLER, 1939)

For every centrally symmetric *d*-polytope $P \subset \mathbb{R}^d$ holds

measures "roundness"
$$\longrightarrow M(P) \ge M(d\text{-cube}) = \frac{4^d}{d!}$$
.

But: cube is not the only minimizer! \rightarrow Hanner polytopes What is known ... ?

- ▶ dimension $d \leq 3$ ✓ not so easy (d = 2: 1939, d = 3: 2020)
- dimension d = 4 ? out of reach
- ► Hanner polytopes are local minimizers √ (2014)
- without requiring central symmetry ? open $\rightarrow M(d\text{-simplex}) = \frac{(d+1)^{d+1}}{(d!)^2}$

KALAI'S FLAG CONJECTURE

 $S(P)\,:=\,\#{\rm flags}\,\,{\rm of}\,\,P$

Conjecture. (flag conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope }P\subset \mathbb{R}^d$ holds

 $S(P) \geq S(d\text{-cube}) = d! 2^d.$

But: cube is not the only minimizer! \rightarrow **Hanner polytopes**

KALAI'S 3^d CONJECTURE

KALAI'S 3^d CONJECTURE

• verified for $d \leq 7$ by enumeration

Kalai's 3^d conjecture

- verified for $d \leq 7$ by enumeration
- ► 2-level polytopes are "very small polytopes"

LINEARLY UNIQUE POLYTOPES

Let Real(P) be the space of cs realization of P module linear transformations.

Definition.

A centrally symmetric polytope is

- ▶ **linearly unique** if REAL(*P*) consists of a single point.
- ▶ **linearly discrete** if REAL(*P*) consists of finitely many points.
- ▶ **linearly compact** if REAL(*P*) is compact.

LINEARLY COMPACT POLYTOPES

Lemma.

If P is a cs minimizer of face number, then P is linearly compact.

Proof sketch.

- ▶ if P is not linearly compact, then there is a convergent sequence P₁, P₂, P₃, ... of realizations of P with lim P_n not being a realization of P.
- observe that in the limit, there cannot be new faces, but faces must have vanished.

 \implies P cannot have been a minimizer.

LINEARLY COMPACT POLYTOPES

Lemma.

If P is a cs minimizer of face number, then P is linearly compact.

Proof sketch.

- ▶ if P is not linearly compact, then there is a convergent sequence P₁, P₂, P₃, ... of realizations of P with lim P_n not being a realization of P.
- observe that in the limit, there cannot be new faces, but faces must have vanished.

 \implies P cannot have been a minimizer.

Conjecture.

The only polytopes with compact realization spaces are linearly discrete.

LINEARLY COMPACT POLYTOPES

Lemma.

If P is a cs minimizer of face number, then P is linearly compact.

Proof sketch.

- ▶ if P is not linearly compact, then there is a convergent sequence P₁, P₂, P₃, ... of realizations of P with lim P_n not being a realization of P.
- observe that in the limit, there cannot be new faces, but faces must have vanished.

 \implies P cannot have been a minimizer.

Conjecture.

The only polytopes with compact realization spaces are linearly discrete.

- true for matroids and oriented matroids.
- ▶ polytope realization spaces are unions of oriented matroid realization spaces.

KALAI FOR NON-CS POLYTOPES

▶ By convention, say that (P, \emptyset) is an antipodal face pair as well.

A(d) ... set of <u>ordered</u> antipodal face pairs
A^{*}(d) ... set of <u>unordered</u> antipodal face pairs

KALAI FOR NON-CS POLYTOPES

▶ By convention, say that (P, \emptyset) is an antipodal face pair as well.

A(d) ... set of <u>ordered</u> antipodal face pairs
A^{*}(d) ... set of <u>unordered</u> antipodal face pairs

Conjecture.

If P is a (2-level) polytope, then

 $|\mathcal{A}(P)| \ge 3^{d+1}$

$$|\mathcal{A}^*(P)| \ge \frac{3^{d+1}+1}{2} = 3 \cdot \frac{3^d-1}{2} + 2$$

KALAI FOR NON-CS POLYTOPES

▶ By convention, say that (P, \emptyset) is an antipodal face pair as well.

A(d) ... set of <u>ordered</u> antipodal face pairs
A^{*}(d) ... set of <u>unordered</u> antipodal face pairs

Conjecture.

If P is a (2-level) polytope, then

 $|\mathcal{A}(P)| \ge 3^{d+1}$

$$|\mathcal{A}^*(P)| \ge \frac{3^{d+1}+1}{2} = 3 \cdot \frac{3^d-1}{2} + 2$$

MAHLER'S CONJECTURE

$$\operatorname{vol}(P) \cdot \operatorname{vol}(P^\circ) \ge \frac{4^d}{d!}$$

Theorem.

In a 2-level polytopes ...

each simplex in a pulling triangulation has the same volume. (lattice volume 1)

Theorem.

In a 2-level polytopes ...

each simplex in a pulling triangulation has the same volume. (lattice volume 1)

Theorem.

In a 2-level polytopes ...

- each simplex in a pulling triangulation has the same volume. (lattice volume 1)
- each pulling triangulation has the same number of simplices.

Theorem.

In a 2-level polytopes ...

- each simplex in a pulling triangulation has the same volume. (lattice volume 1)
- each pulling triangulation has the same number of simplices.

 $f_d^*(P) \ldots \#$ simplices in pulling triangulation of P

The Mahler conjecture is equivalent to the following:

Conjecture.

For a centrally-symmetric 2-level polytope $P \subset \mathbb{R}^d$ holds

 $f_d^*(P) \cdot f_d^*(P^\circ) \ge d! 2^{d-1}$

 $f_d^*(P) \dots \#$ simplices in pulling triangulation of P

The Mahler conjecture is equivalent to the following:

Conjecture.

For a centrally-symmetric 2-level polytope $P \subset \mathbb{R}^d$ holds

 $f_d^*(P) \cdot f_d^*(P^\circ) \ge \frac{1}{2}S(d\text{-cube})$

 $f_d^*(P) \dots \#$ simplices in pulling triangulation of P

The Mahler conjecture is equivalent to the following:

Conjecture.

For a centrally-symmetric 2-level polytope $P \subset \mathbb{R}^d$ holds

 $f_d^*(P) \cdot f_d^*(P^\circ) \ge \frac{1}{2}S(d\text{-cube})$

 $f_d^*(P) \hdots \#$ simplices in pulling triangulation of P

The Mahler conjecture is equivalent to the following:

Conjecture.

For a centrally-symmetric 2-level polytope $P \subset \mathbb{R}^d$ holds

 $f_d^*(P) \cdot f_d^*(P^\circ) \ge \frac{1}{2}S(P) \ge \frac{1}{2}S(d\text{-cube})$

 $f_d^*(P) \dots \#$ simplices in pulling triangulation of P

The Mahler conjecture is equivalent to the following:

Conjecture.

For a centrally-symmetric 2-level polytope $P \subset \mathbb{R}^d$ holds

$$\begin{array}{l} f_{d}^{*}(P) \cdot f_{d}^{*}(P^{\circ}) \, \geq \, \frac{1}{2}S(P) \, \geq \, \frac{1}{2}S(d\text{-cube}) \\ \uparrow \\ \textit{flag conjecture} \end{array}$$

Pulling triangulations

Theorem.

If P is a 2-level polytope, then

$$f_d^*(P) = \sum_{F_0 \preceq \cdots \preceq F_d} \left(1 - \frac{f_0(F_0)}{f_0(F_1)} \right) \cdots \left(1 - \frac{f_0(F_{d-1})}{f_0(F_d)} \right).$$

Proof.

For a vertex v and facet F_{d-1} , let $[v \notin F_{d-1}]$ denote the indicator function.

▶ We have

$$f_d^*(P) = \sum_{F_{d-1}} [v \notin F_{d-1}] f_{d-1}^*(F_{d-1}).$$

Take expectation value w.r.t. a uniform random choice of v:

$$f_d^*(P) = \sum_{F_{d-1}} \left(1 - \frac{f_0(F_{d-1})}{f_0(P)} \right) f_{d-1}^*(F_{d-1}) = \sum_{F_0 \preceq \dots \preceq F_d} \left(1 - \frac{f_0(F_0)}{f_0(F_1)} \right) \cdots \left(1 - \frac{f_0(F_{d-1})}{f_0(F_d)} \right)$$

STRONGLY 2-LEVEL POLYTOPES

STRONGLY 2-LEVEL POLYTOPES

Definition.

- An antipodal face pair is **spanning** if its affine span is \mathbb{R}^d .
- A polytope P is strongly 2-level if each <u>spanning</u> antipodal face pair contains all vertices.

- ▶ $d \le 4$: every 2-level polytope is strongly 2-level.
- d = 5: there is a unique 2-level polytope that is not strongly 2-level (the (6,2)-hypersimplex)
- $\blacktriangleright \ d \leq 5:$ faces of strongly 2-level polytopes are strongly 2-level.
- d = 6: there is a unique strongly 2-level polytope with a facet that is not. (the (7,3)-hypersimplex with a (6,2)-hypersimplex as a facet)

TWISTING

TWISTING CLASSES

TWISTING CLASSES

TWISTING CLASSES & TWISTING DUALITY

TWISTING CLASSES & TWISTING DUALITY

TWISTING DUALITY

All members of a twisting class share

- # vertices
- # vertex orbits
- # antipodal face pairs
- # spanning antipodal face pairs

Within a twisting class one can get from anywhere to anywhere by a single twist.

Twisting duality swaps:

- # vertex orbits \leftrightarrow size of twisting class
- # vertices $\leftrightarrow \#$ spanning antipodal face pairs

Twisting duality preserves:

antipodal face pairs

TWISTED PRISMS

Lemma.

The twisted prism $P \boxminus P$ is 2-level if and only if P is strongly 2-level.

$P \boxminus P$	P
faces	antipodal face pairs
facets	spanning antipodal face pairs
polar duality	twisting duality
# facet types	size of twisting class

TWISTING CLASSES

Thank you.

