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2-level polytopes

P = conv{p1, ..., pn} ⊂ Rd, d ≥ 0

Definition.

I Two faces F1, F2 ⊆ P are antipodal if they are contained in parallel
hyperplanes (i.e. there are parallel hyperplanes H1, H2 ⊆ Rd with Fi = P ∩Hi)

I A polytope P is 2-level if each antipodal face pair that contains a facet
also contains all vertices.
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Examples

dim 0 1 2 3 4 5 6 7 8

2-level 1 1 2 5 19 106 1150 27291 1378453
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Examples

Many 2-level polytopes are constructed from combinatorial objects:

I Hanner polytopes (in relation to cographs)

I order polytopes of posets

I stable set polytopes of perfect graphs
+ their twisted prisms (= Hansen polytopes)

I spanning tree polytopes of series-parallel graphs

I Birkhoff polytopes (from double stochastic matrices)

I certain matroid base polytopes
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Properties

I all faces are 2-level

I closed under products and joins

I #vertices · #facets ≤ d2d+1

I are 01-polytopes (if P is d-dimensional then P ⊆ [0, 1]d)

Theorem.

2-level polytopes are precisely the polytopes that can be written as the
intersection of a cube with an affine subspace that is spanned by vertices of the
cube.
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Binary scalar products

Based on empirical evidence it was conjectured that

f0(P ) · fd−1(P ) ≤ d2d+1.

This was eventually proven using binary scalar product pairs: A,B ⊂ Rd

〈a, b〉 ∈ {0, 1}, for all a ∈ A and b ∈ B.

Theorem. (Kupavskii, Weltge; 2020)

If A,B ⊆ Rd is a binary scalar product pair, then |A| · |B| ≤ (d+ 1)2d.

As(P ) ... set of spanning antipodal face pairs

Corollary.

For a 2-level polytope holds f0(P ) · |As(P )| ≤ (d+ 1)2d.
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Conjectures for centrally
symmetric polytopes



Centrally symmetric polytopes

centrally symmetric :⇐⇒ P = −P

dim 0 1 2 3 4 5 6 7 8

2-level 1 1 2 5 19 106 1150 27291 1378453

cs 2-level 1 1 1 2 4 13 45 238 1790
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Properties

I each facet contains exactly half of the vertices

I each vertex lies in exactly half of the facets

}
defining 2-level among cs

=⇒ closed under polar duality

I precisely the section of a cube with linear space spanned by vertices

I linearly unique (all cs 01-polytopes are linearly unique)

=⇒ linearly invariant geometric properties are combinatorial properties
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Kalai’s 3d conjecture

s(P ) := HHf−1 + f0 + f1 + · · ·+ fd−1 + fd = #non-empty faces

Conjecture. (3d conjecture, Kalai, 1989)

For every centrally symmetric d-polytope P ⊂ Rd holds

s(P ) ≥ s(d-cube) = 3d.

But: cube is not the only minimizer! → Hanner polytopes

What is known ... ?

I dimension d ≤ 3 X easy

I dimension d = 4 X not so easy (2007)

I simple/simplicial polytopes X needs a lot of algebra

I without requiring central symmetry X easy → s(d-simplex) = 2d − 1
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Hanner polytopes

Hanner polytopes are defined recursively:

(i) start from a line segment.

(ii) recursively apply Cartesian products (×) and sums (∗)
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Hanner polytopes

... ...

#Hanner polytopes for d ≥ 1 = 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, ...
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Mahler’s conjecture

Mahler volume ... M(P ) := vol(P ) · vol(P ◦)

Conjecture. (3d conjecture, Mahler, 1939)

For every centrally symmetric d-polytope P ⊂ Rd holds

measures “roundness” −→ M(P ) ≥ M(d-cube) =
4d

d!
.

But: cube is not the only minimizer! → Hanner polytopes

What is known ... ?

I dimension d ≤ 3 X not so easy (d = 2: 1939, d = 3: 2020)

I dimension d = 4 ? out of reach

I Hanner polytopes are local minimizers X(2014)

I without requiring central symmetry ? open →M(d-simplex) = (d+1)d+1

(d!)2
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Kalai’s flag conjecture

S(P ) := #flags of P

Conjecture. (flag conjecture, Kalai, 1989)

For every centrally symmetric d-polytope P ⊂ Rd holds

S(P ) ≥ S(d-cube) = d! 2d.

But: cube is not the only minimizer! → Hanner polytopes

What is known ... ?

I dimension d ≤ 3 X easy

I dimension d = 4 X not so easy (2007)

I simple/simplicial polytopes X needs a lot of algebra

I without requiring central symmetry X easy → s(d-simplex) = 2d − 1

Martin Winter 13 / 30



Kalai’s 3d conjecture

I verified for d ≤ 7 by enumeration

I 2-level polytopes are “very small polytopes”
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Linearly unique polytopes

Let Real(P ) be the space of cs realization of P module linear transformations.

Definition.

A centrally symmetric polytope is

I linearly unique if Real(P ) consists of a single point.

I linearly discrete if Real(P ) consists of finitely many points.

I linearly compact if Real(P ) is compact.
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Linearly compact polytopes

Lemma.

If P is a cs minimizer of face number, then P is linearly compact.

Proof sketch.

I if P is not linearly compact, then there is a convergent sequence P1, P2, P3, ... of
realizations of P with limPn not being a realization of P .

I observe that in the limit, there cannot be new faces, but faces must have
vanished.

=⇒ P cannot have been a minimizer. �

Conjecture.

The only polytopes with compact realization spaces are linearly discrete.

I true for matroids and oriented matroids.

I polytope realization spaces are unions of oriented matroid realization spaces.
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Kalai for non-cs polytopes

I By convention, say that (P,∅) is an antipodal face pair as well.

I A(d) ... set of ordered antipodal face pairs

I A∗(d) ... set of unordered antipodal face pairs

Conjecture.

If P is a (2-level) polytope, then

|A(P )| ≥ 3d+1

|A∗(P )| ≥ 3d+1 + 1

2
= 3 · 3

d − 1

2
+ 2

Martin Winter 16 / 30



Kalai for non-cs polytopes

I By convention, say that (P,∅) is an antipodal face pair as well.

I A(d) ... set of ordered antipodal face pairs

I A∗(d) ... set of unordered antipodal face pairs

Conjecture.

If P is a (2-level) polytope, then

|A(P )| ≥ 3d+1

|A∗(P )| ≥ 3d+1 + 1

2
= 3 · 3

d − 1

2
+ 2

Martin Winter 16 / 30



Martin Winter 17 / 30



Martin Winter 18 / 30



Kalai for non-cs polytopes

I By convention, say that (P,∅) is an antipodal face pair as well.

I A(d) ... set of ordered antipodal face pairs

I A∗(d) ... set of unordered antipodal face pairs

Conjecture.

If P is a (2-level) polytope, then

|A(P )| ≥ 3d+1

|A∗(P )| ≥ 3d+1 + 1

2
= 3 · 3

d − 1

2
+ 2

Martin Winter 19 / 30



Martin Winter 20 / 30



Martin Winter 21 / 30



Mahler’s conjecture

vol(P ) · vol(P ◦) ≥ 4d

d!



Volume and triangulation

Theorem.

In a 2-level polytopes ...

I each simplex in a pulling triangulation has the same volume.
(lattice volume 1)

I each pulling triangulation has the same number of simplices.
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Mahler volume and pulling triangulations

f∗
d (P ) ... # simplices in pulling triangulation of P

The Mahler conjecture is equivalent to the following:

Conjecture.

For a centrally-symmetric 2-level polytope P ⊂ Rd holds

f∗
d (P ) · f∗

d (P
◦) ≥ d!2d−1

1
2S(d-cube)
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Pulling triangulations

Theorem.

If P is a 2-level polytope, then

f ∗
d (P ) =

∑
F0�···�Fd

(
1− f0(F0)

f0(F1)

)
· · ·
(
1− f0(Fd−1)

f0(Fd)

)
.

Proof.

I For a vertex v and facet Fd−1, let [v 6∈ Fd−1] denote the indicator function.

I We have
f∗
d (P ) =

∑
Fd−1

[v 6∈ Fd−1]f
∗
d−1(Fd−1).

I Take expectation value w.r.t. a uniform random choice of v:

f∗
d (P ) =

∑
Fd−1

(
1− f0(Fd−1)

f0(P )

)
f∗
d−1(Fd−1) =

∑
F0�···�Fd

(
1− f0(F0)

f0(F1)

)
· · ·
(
1− f0(Fd−1)

f0(Fd)

)
�
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Strongly 2-level polytopes

Definition.

I An antipodal face pair is spanning if its affine span is Rd.

I A polytope P is strongly 2-level if each spanning antipodal face pair
contains all vertices.

I d ≤ 4: every 2-level polytope is strongly 2-level.

I d = 5: there is a unique 2-level polytope that is not strongly 2-level
(the (6,2)-hypersimplex)

I d ≤ 5: faces of strongly 2-level polytopes are strongly 2-level.

I d = 6: there is a unique strongly 2-level polytope with a facet that is not.
(the (7,3)-hypersimplex with a (6,2)-hypersimplex as a facet)
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Twisting
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Twisting classes

& twisting duality
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Twisting duality

All members of a twisting class share

I # vertices

I # vertex orbits

I # antipodal face pairs

I # spanning antipodal face pairs

Within a twisting class one can get from anywhere to anywhere by a single twist.

Twisting duality swaps:

I # vertex orbits ↔ size of twisting class

I # vertices ↔ # spanning antipodal face pairs

Twisting duality preserves:

I # antipodal face pairs
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Twisted prisms

Lemma.

The twisted prism P � P is 2-level if and only if P is strongly 2-level.

P � P P

faces antipodal face pairs
facets spanning antipodal face pairs

polar duality twisting duality
# facet types size of twisting class
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Twisting classes
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Thank you.


