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SCISSORS CONGRUENCE

Two polytopes P and @ are scissors congruent if
P=PU---UP, Q=Q1YU---UQ,.

with Q; = S;(P;), where S; € Iso(R?) are isometries.
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SCISSORS CONGRUENCE

Two polytopes P and @ are scissors congruent if
P=PU---UP, Q=0Q1U---UQ,.

with Q; = S;(P;), where S; € Iso(R?) are isometries.

Theorem (WaLLACE, Boryal, GERWIEN; 1807/33/35)
Two polygons P, Q are scissors congruent if and only if vol(P) = vol(Q).
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HILBERT’S THIRD PROBLEM

Given any two polyhedra P and Q) of equal volume, is it always possible
to dissect P into finitely many polyhedral pieces P, ..., P,, which can

then be reassembled to yield Q)7
— HILBERT (1900)
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HILBERT’S THIRD PROBLEM

Given any two polyhedra P and Q) of equal volume, is it always possible
to dissect P into finitely many polyhedral pieces P, ..., P,, which can

then be reassembled to yield Q)7
— HILBERT (1900)

Theorem. (Denn; 1901)

If P,Q C R? are scissors congruent, then they have the same Dehn invariant.

ZZ ®Z /27’(’ - RJ@ R/Z/(Z

eCP
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HILBERT’S THIRD PROBLEM

Given any two polyhedra P and Q) of equal volume, is it always possible
to dissect P into finitely many polyhedral pieces P, ..., P,, which can

then be reassembled to yield Q)7
— HILBERT (1900)

Theorem. (Denn; 1901)

If P,Q C R? are scissors congruent, then they have the same Dehn invariant.

= L@z 0(e)/2r © R /2.

eCP
But: D(cube) = 0 and D(tetrahedron) # 0.
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HILBERT’S THIRD PROBLEM

Given any two polyhedra P and @) of equal volume, is it always possible
to dissect P into finitely many polyhedral pieces P, ..., P,, which can

then be reassembled to yield ()7
yield @ — HILBERT (1900)

Theorem. (Demnn; 1901)

If P,Q C R? are scissors congruent, then they have the same Dehn invariant.

Zﬁ ®Z /27T

eCP
But: D(cube) =0 and D(tetrahedron) # 0.

Theorem. (SypLEr; 1965)

P,Q C R? are scissors congruent if and only if they have the same volume and
the same Dehn invariant.



VALUATIONS

Whenever P, Q, PN Q and P U @ are polytopes, a valuation satisfies

¢(P)+¢(Q) = d(PUQR) +6(PNQ)

Examples:

> volume
Dehn invariant
surface area measure
Euler characteristic

mixed volumes

vvyyvyVvVyy

number of contained lattice points
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VALUATIONS

Whenever P, Q, PN Q and P U @ are polytopes, a valuation satisfies

¢(P)+¢(Q) = d(PUQR) +6(PNQ)

Examples:

>

vvyyvyVvVyy

volume

Dehn invariant
surface area measure
Euler characteristic
mixed volumes

number of contained lattice points

What we mainly care about (true for simple valuations):

PP UF) =¢(P1)+ -+ o(Pn)
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TWO COMPOSITION PUZZLES

:3 7
I\
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TWO COMPOSITION PUZZLES
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Puzzie 1

Let v(P) be the surface area measure of P C R? on S4-1.
¢(P) :=v(P) —v(-P)

Fact: a convex polygon P is centrally symmetric if and only if ¢(P) = 0.
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Puzzie 11

o(P) = / et dy = / e dy - / e
11><12 I1 I2

Fact: a rectangle P has an integer side length if and only if ¢(P) = 0.

— Stan Wagon, “Fourteen Proofs of a Result About Tiling a Rectangle”
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DUAL VOLUMES AND
THE CANONICAL FORM



POLAR DUALITY

(polar) dual ... P°:={z € R | (z,9) <1 forall y € P}.

48
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POLAR DUALITY

(polar) dual ... P°:={z € R | (z,9) <1 forall y € P}.

48

Central new idea: the volume of the dual behaves valuative!
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DUAL VOLUMES

canonical form...
o _ px)
QP,L =vol(P —x)° = —=%
P = vel(p -y = B

Observe: this is a rational function in x.
= () can be extended to points = outside of P.

Theorem. (Arkan-HaMED, Bar, Lam; 2017)

QPY---UP;x)=QP;z)+ -+ Q(Py; x).
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DUAL VOLUMES

canonical form...
QP ) :==vol(P —x)° = p(z)

q(z)
Observe: this is a rational function in x.
= () can be extended to points = outside of P.

Theorem. (Arkan-HaMED, Bar, Lam; 2017)

QPY---UP;x)=QP;z)+ -+ Q(Py; x).

Q(P;z) - HLF(x) = r(x)

P Lp(x) :=hp — (up,z) ... facet-defining linear form
» wpg ... unit normal vector
> hp ... facet height
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DUAL VOLUMES

canonical form...
QP ) :==vol(P —x)° = p(z)

q(x)
Observe: this is a rational function in z.
= () can be extended to points = outside of P.
Theorem. (Arkan-HaMED, Bar, Lam; 2017)
QPY---UP;x)=QP;z)+ -+ Q(Py; x).

.. adjoint polynomial

Q(P;x) - H Lp(z) = e.ldjp(:l;)

P Lp(x) :=hp — (up,z) ... facet-defining linear form
» wpg ... unit normal vector
> hp ... facet height
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DUAL VOLUMES

canonical form... .
d
0P 1) = vol(P — 2)° = U@

I Lr(z)

Observe: this is a rational function in z.
= () can be extended to points = outside of P.
Theorem. (Arkan-HaMED, Bar, Lam; 2017)
QPY---UP;x)=Q(P;x)+ -+ Q(Py; x).

.. adjoint polynomial

Q(P;x) - H Lp(z) = e.ldjp(:l;)

P Lp(x) :=hp — (up,z) ... facet-defining linear form
» wpg ... unit normal vector
> hp ... facet height

Martin Winter (with Tom Baumbach, Ansgar Freyer and Julian Weigert)



ADJOINT DEGREES

=m

> “Generically” the adjoint adjp has degree #facets — d — 1.
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ADJOINT DEGREES

=Im
~

> “Generically” the adjoint adjp has degree #facets — d — 1.
» But: this is not true in general.

-1 -2

v
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ADJOINT DEGREES

=m

——
> “Generically” the adjoint adjp has degree #facets — d — 1.

» But: this is not true in general.

-1 -2

v

We call this defficiency in degree the degree drop of P:
drop(P):=(m—d—1) —degadjp.
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ADJOINT DEGREES

=m

——
> “Generically” the adjoint adjp has degree #facets — d — 1.

» But: this is not true in general.

-1 -2

v

We call this defficiency in degree the degree drop of P:
drop(P):=(m—d—1) —degadjp.

Example: for the d-cube (g := [~1,1]¢ we have
some constant
Qg 2) = ————5— d Og)=d—1.
e =T e
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THE DROP UNDER COMPOSITION
Lemma.
drop(P, U --- U P,) > mindrop(F;).
Proof. Observe
degQ(Py U---UP,) =deg (Z Q(Pz)> < max deg Q(P;).

Then use drop(P) = —d — 1 — deg Q(P). (]
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THE DROP UNDER COMPOSITION
Lemma.
drop(P, U --- U P,) > mindrop(F;).
Proof. Observe
degQ(Py U---UP,) =deg (Z Q(Pl)> < maxdeg Q(P;).

Then use drop(P) = —d — 1 — deg Q(P). (]
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THE DROP UNDER COMPOSITION

Lemma.

drop(P, U --- U P,) > mindrop(F;).

Proof. Observe

degQ(Py U---UP,) =deg (Z Q(Pz)> < max deg Q(P;).
Then use drop(P) = —d — 1 — deg Q(P). (]

Questions:
» What other polytopes have a drop?

» What characterizes polytopes with a
particular drop s?
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PROPERTIES OF THE DROP
(i) drop(Py x - x P,) =n—1+ Y drop(P;).
(i) if Fis a facet of P, then i
drop(F) > drop(P) — 1,

with equality if and only if P has a facet F’ parallel to F.
(i) drop(P) <d —1.
(iv) drop(SP +t) = drop(P).
(v) if w is a projection onto a hyperplane, then

drop(mP) > drop(P) — 1.

(vi) drop(Pr+ -+ Py) > (d=1) =Y (d; = 1)+ ) _ drop(P).

(vii) if P is centrally symmetric !
i
drop(P) is even | d !s odd .
odd if d is even
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MAXIMAL DROP

Lemma.
A zonotope P C R? attains the maximal possible drop(P) = d — 1.
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MAXIMAL DROP

Lemma.
A zonotope P C R? attains the maximal possible drop(P) = d — 1.

Proof. (actually, four proofs) We have drop(P) < d — 1, but also a zonotope ...

1. ... is a projection of an n-cube [J,;:

drop(7q0y) > drop(d,) — (n —d) =d — 1.
=n—1

2. ... is a Minkowski sum of line segments S1, ..., Sp:

drop(sl+~--+sn)z(d—l)—z(dim(si)—1)+Z@R(ii)=d—1.

o =0 =0

3. ... can be tiled by parallelepipeds P, ..., P,:

drop(Py U ---J P,) > mindrop(P;) =d — 1.
7 N——

. =d—1
4. ... 2-faces are centrally symmetric: ‘

drop(P) > drop(2-face) + (d —2) =d — 1. O
—_——

{0,1}
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WHAT ELSE HAS A DROP?

Observation: for maximal drop facets must come in parallel pairs.
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WHAT ELSE HAS A DROP?

Observation: for maximal drop facets must come in parallel pairs.

! !

Question: can a non-centrally symmetric polygon have a drop?
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WHAT ELSE HAS A DROP?

Observation: for maximal drop facets must come in parallel pairs.

h RN o
e N "~
Question: can a non-centrally symmetric polygon have a drop?

“Proof” that the answer is No:

O~O7Ay
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(
(
= ¢(P, + tl) -+ (P, + )
= &( U (P +t,)) =0(Q)

o -
+
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(PAY---UP,)
(Pl) -+ ¢(Pn)

(P, + tl) -+ (P, + )
= ¢(

‘Y (Pn + tn)) = ¢(Q)

o -
+
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TRANSLATION SCISSORS CONGRUENCE

¢(P) UP)

(P
(R) ¢()

(P +h) +¢G’+t)
(P1+t1 '(Pn+tn)):¢(Q)

=1l

¢
¢
-0
¢
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A NEW TRANSLATION-INVARIANT
VALUATION



THE VIEW FROM INFINITY

adjp(0, T)|zy=0

(=1 [Tp(ur, 2)

Qo(Pra) = QP; 20, 2)|zg=0 =

One can view this as
> restricting € to the hyperplane at infinite (given by zg = 0).

> restricting the numerator (resp. denominator) to the “expected leading
monomials” .
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THE VIEW FROM INFINITY

adjp(0, T)|zy=0

ol = P D=0 = TR T )

One can view this as
> restricting € to the hyperplane at infinite (given by zg = 0).

> restricting the numerator (resp. denominator) to the “expected leading
monomials” .

Lemma.
Qo is a translation-invariant valuation.  (but ) /s not)

Proof idea. Translations preserve the leading coefficients of a polynomial:

x):Zpaxa — plz+t)= Zpaas—i—t 0
[e3%
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How TO USE (g

Observation: Qy(P) = 0 if and only if drop(P) > 0.

Theorem.

If P and Q are translation scissors congruent, then

drop(P) >0 <= drop(Q) > 0.

But ...
» We can only distinguish drop vs. no-drop.

> We lose all information about the precise value of the degree drop.
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CENTRAL SYMMETRY < drop = 1

Theorem.
For d = 2 we have drop(P) > 0 if and only if P is centrally-symmetric.

Proof.

> every edge needs a parallel edge = must be a 2n-gon

OO Ao

> Qo(P) =0 and this is preserved in all steps é O
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CENTRAL SYMMETRY < drop = 1

Theorem.
For d = 2 we have drop(P) > 0 if and only if P is centrally-symmetric.

Proof.

> every edge needs a parallel edge = must be a 2n-gon

> Qo(P) =0 and this is preserved in all steps é O

~ =
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CENTRAL SYMMETRY < drop = 1

Theorem.
For d = 2 we have drop(P) > 0 if and only if P is centrally-symmetric.
Proof.

> every edge needs a parallel edge = must be a 2n-gon

» Qo(P) =0 and this is preserved in all steps O

Theorem.
P has maximal degree drop d — 1 if and only if P is a zonotope.
Proof.

> if P has maximal drop, then so do its faces.
> all 2-faces centrally symmetric = zonotope. (]
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Question: Are zonotopes only translation scissors congruent to zonotopes?
or stronger, is the precise degree drop preserved under TS congruence?

Baumbach, Ansgar Freyer and Julian Weigert)



YES AND NO

Theorem.
In dimension d < 3 the degree drop is a translation scissors invariant.
Proof. (for d = 3)
0 Q#0
drop(P) =¢1 Q¢ =0 and P is not centrally symmetric .
2 o =0 and P is centrally symmetric

Both Qo = 0 and being centrally symmetric are TS invariant. U
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YES AND NO

Theorem.

In dimension d < 3 the degree drop is a translation scissors invariant.

Proof. (for d = 3)
0 Qo #0
drop(P) =1¢1 o =0 and P is not centrally symmetric .
2 o =0 and P is centrally symmetric

Both Qo = 0 and being centrally symmetric are TS invariant. U

Corollary.

In dimension d < 3, being a zonotope is a translation scissors invariant.
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YES AND NO

Theorem.

In dimension d < 3 the degree drop is a translation scissors invariant.

Proof. (for d = 3)
0 Qo #0
drop(P) =1¢1 o =0 and P is not centrally symmetric .
2 o =0 and P is centrally symmetric

Both Qo = 0 and being centrally symmetric are TS invariant. U

Corollary.

In dimension d < 3, being a zonotope is a translation scissors invariant.

This is not true in dimensions d > 4.

Example: 4-cube and 24-cell.
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HOMOGENEITY



HOMOGENEITY OF £}
A valuation is k-homogeneous if for all A > 0 holds

S(\P) = A¥g(P),
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HOMOGENEITY OF £}
A valuation is k-homogeneous if for all A > 0 holds
d(AP) = N g(P).

Lemma.
Qo is I-homogeneous.  (but O is not)
Proof.  Q(AP;z) = vol(AP — z)°
= vol(A(P — z/)\))°
=vol A" (P —z/\)°)
= A"4vol(P — z/N)° = A1 Q(P;2/\).
—a_adjp(0,z/X)
[z Lr(0,2/X)
AT adj (0, ) _ adjp(0, z)
A" g Lr(0, ) [1rLr(0,2)

Qo(AP;z) = A"1Q(P;0,2/)) = A

=

= )\Qo(P, .'13)
O
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HOMOGENEITY IS GREAT!

Theorem. (McMuLLEN)
If Qg is 1I-homogeneous, then it is Minkowski additive:

Qo(Pr+ -+ P) = Q(P) + - + Q(Py).
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HOMOGENEITY IS GREAT!

Theorem. (McMuLLEN)

If Qg is 1I-homogeneous, then it is Minkowski additive:

Qo(Py+ -+ P)) = Qo(P) + -+ Qo(P).

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.
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HOMOGENEITY IS GREAT!

Theorem. (McMuLLEN)

If Qg is 1I-homogeneous, then it is Minkowski additive:

Qo(P1++Pn):QO(P1)++QO(Pn)

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

N
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HOMOGENEITY IS GREAT!

Theorem. (McMULLEN)

If Qo is I-homogeneous, then it is Minkowski additive:

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

~N

If P is a centrally-symmetric polytope of odd dimension with drop(P) > 0, then
each half Q) of a central dissection has drop(Q) > 0 as well.

Theorem.



A CHARACTERIZATION IN DIMENSION THREE

Theorem.
If P is a 3-dimensional polytope, then

0 if P+ (—P) is not a zonotope
drop(P) = ¢ 1 if P+ (—P) is a zonotope, but P itself is not .
2 if P is a zonotope

We currently have no such characterization in higher dimensions.
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MCcMULLEN’S DECOMPOSITION

Theorem. (McMuLLeN)

If Qq is translation-invariant, 1-homogeneous and weakly continuous, then there
is a valuation ¢ on (d — 1)-dimensional cones so that

Qo(P) =Y L. 6(Np(e)).

eCP
Questions:

> How to verify weak continuity?
» How to determine the valuation ¢7
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MCcMULLEN’S DECOMPOSITION

Theorem. (McMULLEN)

If Qq is translation-invariant, 1-homogeneous and weakly continuous, then there
is a valuation ¢ on (d — 1)-dimensional cones so that

Qo(P) = Le p(Np(e)).

eCP

Questions:
> How to verify weak continuity?
» How to determine the valuation ¢7

Theorem.

Qo(P: 7) = —W S Q(Tr(e).

eCP
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds 1

le
WPi9) =~ 2 Gy

eCP
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds 1

le
WPi9) =~ 2 Gy

eCP

Case study: the triangle

—ade _ 1 61 52 63
(@, ur) (@, u2)(w,us) — la? (<w,m> (woua) | <x,u3>)

1 iz, ug){x,us) + lolx,ur)(x, us) + 3{x, ur){x, usz)
2 (z, u)(x, up)(z, us)
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds 1 Z ée
TP & (w,)
Case study: the triangle
- ade _ 1 0y ly 63
= (o) * o) * )

1 iz, ug){x,us) + lolx,ur)(x, us) + 3{x, ur){x, usz)
2
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds 1

le
WPi9) =~ 2 Gy

eCP

Case study: the triangle

—adja 1 (< 4 lo 3 >)

= - +
2| N un) (o, u) - (,us

_ 1 iz, ug){x,us) + lolx,ur)(x, us) + 3{x, ur){x, usz)
[

ade ”‘73”2 = €1<m,u2><x,u3> + €2<$,U1><x,U3> + £3<x,u1><$,u2)
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MCMULLEN’S DECOMPOSITION FOR d = 2

Theorem.
For d = 2 holds 1

le
WPi9) =~ 2 Gy

eCP

Case study: the triangle
—adja 1 5 lo U3
— +
]| (<w,U1> (z,u2) <w,U3>)

1 b ug) (@, us) + o, wa ) (2, us) + Ls(, ua)(x, ua)
2

adjy [|z]* = b1 (z, U2><w, uz) + Loz, ur) (@, uz) + L3 (2, ur) (2, uz)

Martin Winter (with Tom Baumbach, Ansgar Freyer and Julian Weigert)



MCMULLEN’S DECOMPOSITION FOR SIMPLICES

Theorem.
Qo(P; ) ”96“2 Ze Q(Tp(e); ).

First proof idea: triangulate P + prove theorem for simplices.
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MCMULLEN’S DECOMPOSITION FOR SIMPLICES

Theorem.
Qo(P; ) va!P Ze Q(Tp(e); ).

First proof idea: triangulate P + prove theorem for simplices.

adja=Qo(P;z) - [ p(z,ur)

det ‘ ‘ ‘ [l
ho e | | | |
= S enrae T T T e, @)
< 0 1 1 0

i UTp(eij)) - Tlpl{x,ur)
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SECOND PROOF IDEA: ORTHOSCHEMES

U1
V2

U1
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SECOND PROOF IDEA: ORTHOSCHEMES

V2
Vo h2
hy 0
U1 ’
Vo = (07050? "'70)a Up = (hO)O 0,. O’O))
vy = (h1,0,0,...,0), = (=h2, h1,0,...,0,0),
Vg = (hl,hz,o, ...,O), (0, h3,h2, .. )
U3 = (h17h27h37 70)’ ( h47h3"°"0a0)7
Vg = (hl,hz,hg, ...,hd), Uq = (0,0,0, ...,0, —hd+1),

Martin Winter (with Tom Baumbach, Ansgar Freyer and Julian Weigert)



SECOND PROOF IDEA: ORTHOSCHEMES

V2
Vo
ho
hy Uo
U1
uo
d d 12 2
h% ,+---+ h*
2 i+1 J
Y a? =Y L (b — hiwiga) (hjazy — i)
; 4~ hihii1hjhji
— — +1785705+
=1 1,7=0
i<j
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Thank you.




