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Scissors congruence

Two polytopes P and Q are scissors congruent if

P = P1 ·∪ · · · ·∪ Pn Q = Q1 ·∪ · · · ·∪Qn.

with Qi = Si(Pi), where Si ∈ Iso(Rd) are isometries.

Theorem (Wallace, Bolyai, Gerwien; 1807/33/35)

Two polygons P,Q are scissors congruent if and only if vol(P ) = vol(Q).
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Hilbert’s Third Problem

Given any two polyhedra P and Q of equal volume, is it always possible
to dissect P into finitely many polyhedral pieces P1, ..., Pn, which can
then be reassembled to yield Q?

– Hilbert (1900)

Theorem. (Dehn; 1901)

If P,Q ⊂ R3 are scissors congruent, then they have the same Dehn invariant.

D(P ) :=
∑
e⊂P

`e ⊗Z θ(e)/2π ∈ R⊗Z R/2πZ.

But: D(cube) = 0 and D(tetrahedron) 6= 0.

Theorem. (Sydler; 1965)

P,Q ⊂ R3 are scissors congruent if and only if they have the same volume and
the same Dehn invariant.
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Valuations

Whenever P , Q, P ∩Q and P ∪Q are polytopes, a valuation satisfies

φ(P ) + φ(Q) = φ(P ∪Q) + φ(P ∩Q)

Examples:

I volume

I Dehn invariant

I surface area measure

I Euler characteristic

I mixed volumes

I number of contained lattice points

What we mainly care about (true for simple valuations):

φ(P1 ·∪ · · · ·∪ Pn) = φ(P1) + · · ·+ φ(Pn).
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Two composition puzzles
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Puzzle I

Let ν(P ) be the surface area measure of P ⊂ Rd on Sd−1.

φ(P ) := ν(P )− ν(−P )

Fact: a convex polygon P is centrally symmetric if and only if φ(P ) = 0.
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Puzzle II

φ(P ) :=

∫
I1×I2

e2πi(x1+x2) dx =

∫
I1

e2πix1 dx1 ·
∫
I2

e2πix2 dx2

Fact: a rectangle P has an integer side length if and only if φ(P ) = 0.

−→ Stan Wagon, “Fourteen Proofs of a Result About Tiling a Rectangle”
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Dual volumes and

the canonical form

Ω



Polar duality

(polar) dual ... P ◦ := {x ∈ Rd | 〈x, y〉 ≤ 1 for all y ∈ P}.

Central new idea: the volume of the dual behaves valuative!
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Dual volumes

canonical form...

Ω(P ;x) := vol(P − x)◦ =
p(x)

q(x)

adjP (x)∏
F LF (x)

Observe: this is a rational function in x.

=⇒ Ω can be extended to points x outside of P .

Theorem. (Arkani-Hamed, Bai, Lam; 2017)

Ω(P1 ·∪ · · · ·∪ Pn;x) = Ω(P1;x) + · · ·+ Ω(Pn;x).

Ω(P ;x) ·
∏
F

LF (x) = r(x)

... adjoint polynomial

adjP (x)

I LF (x) := hF − 〈uF , x〉 ... facet-defining linear form

I uF ... unit normal vector

I hF ... facet height
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Adjoint degrees

I “Generically” the adjoint adjP has degree

=:m︷ ︸︸ ︷
#facets− d− 1.

I But: this is not true in general.

We call this defficiency in degree the degree drop of P :

drop(P ) := (m− d− 1)− deg adjP .

Example: for the d-cube �d := [−1, 1]d we have

Ω(�d;x) =
some constant∏

i(1− x2
i )

=⇒ drop(�d) = d− 1.
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The drop under composition

Lemma.

drop(P1 ·∪ · · · ·∪ Pn) ≥ min
i

drop(Pi).

Proof. Observe

deg Ω(P1 ·∪ · · · ·∪ Pn) = deg
(∑

i

Ω(Pi)
)
≤ max

i
deg Ω(Pi).

Then use drop(P ) = −d− 1− deg Ω(P ). �

Questions:

I What other polytopes have a drop?

I What characterizes polytopes with a
particular drop s?
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Properties of the drop

(i) drop(P1 × · · · × Pn) = n− 1 +
∑
i

drop(Pi).

(ii) if F is a facet of P , then

drop(F ) ≥ drop(P )− 1,

with equality if and only if P has a facet F ′ parallel to F .

(iii) drop(P ) ≤ d− 1.

(iv) drop(SP + t) = drop(P ).

(v) if π is a projection onto a hyperplane, then

drop(πP ) ≥ drop(P )− 1.

(vi) drop(P1 + · · ·+ Pn) ≥ (d− 1)−
∑
i

(di − 1) +
∑
i

drop(Pi).

(vii) if P is centrally symmetric

drop(P ) is

{
even if d is odd

odd if d is even
.
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Maximal drop

Lemma.

A zonotope P ⊂ Rd attains the maximal possible drop(P ) = d− 1.

Proof. (actually, four proofs) We have drop(P ) ≤ d− 1, but also a zonotope ...

1. ... is a projection of an n-cube �n:

drop(πd�n) ≥ drop(�n)︸ ︷︷ ︸
=n−1

− (n− d) = d− 1.

2. ... is a Minkowski sum of line segments S1, ..., Sn:

drop(S1 + · · ·+ Sn) ≥ (d− 1)−
∑
i

(dim(Si)− 1)︸ ︷︷ ︸
=0

+
∑
i

drop(Si)︸ ︷︷ ︸
=0

= d− 1.

3. ... can be tiled by parallelepipeds P1, ..., Pn:

drop(P1 ·∪ · · · ·∪ Pn) ≥ min
i

drop(Pi)︸ ︷︷ ︸
=d−1

= d− 1.

4. ... 2-faces are centrally symmetric:

�
drop(P ) ≥ drop(2-face)︸ ︷︷ ︸

∈{0,1}

+ (d− 2) = d− 1.
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What else has a drop?

Observation: for maximal drop facets must come in parallel pairs.

Question: can a non-centrally symmetric polygon have a drop?

“Proof” that the answer is No:
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Translation scissors congruence

φ(P ) = φ(P1 ·∪ · · · ·∪ Pn)

= φ(P1) + · · ·+ φ(Pn)

?

= φ(P1 + t1) + · · ·+ φ(Pn + tn)

= φ
(
(P1 + t1) ·∪ · · · ·∪ (Pn + tn)

)
= φ(Q)
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A new translation-invariant

valuation

Ω0



The view from infinity

Ω0(P ;x) := Ω(P ;x0, x)|x0=0 =
adjP (x0, x)|x0=0

(−1)m
∏

F 〈uF , x〉
.

One can view this as

I restricting Ω to the hyperplane at infinite (given by x0 = 0).

I restricting the numerator (resp. denominator) to the “expected leading
monomials”.

Lemma.
Ω0 is a translation-invariant valuation. (but Ω is not)

Proof idea. Translations preserve the leading coefficients of a polynomial:

�
p(x) =

∑
α

pαx
α −→ p(x+ t) =

∑
α

pα(x+ t)α.
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How to use Ω0

Observation: Ω0(P ) = 0 if and only if drop(P ) > 0.

Theorem.

If P and Q are translation scissors congruent, then

drop(P ) > 0 ⇐⇒ drop(Q) > 0.

But ...

I We can only distinguish drop vs. no-drop.

I We lose all information about the precise value of the degree drop.
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Central symmetry ⇔ drop = 1

Theorem.

For d = 2 we have drop(P ) > 0 if and only if P is centrally-symmetric.

Proof.
I every edge needs a parallel edge =⇒ must be a 2n-gon

I Ω0(P ) = 0 and this is preserved in all steps  �

Theorem.

P has maximal degree drop d− 1 if and only if P is a zonotope.

Proof.
I if P has maximal drop, then so do its faces.

I all 2-faces centrally symmetric =⇒ zonotope. �
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Question: Are zonotopes only translation scissors congruent to zonotopes?
or stronger, is the precise degree drop preserved under TS congruence?
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Yes and no

Theorem.

In dimension d ≤ 3 the degree drop is a translation scissors invariant.

Proof. (for d = 3)

drop(P ) =


0 Ω0 6= 0

1 Ω0 = 0 and P is not centrally symmetric

2 Ω0 = 0 and P is centrally symmetric

.

Both Ω0 = 0 and being centrally symmetric are TS invariant. �

Corollary.

In dimension d ≤ 3, being a zonotope is a translation scissors invariant.

This is not true in dimensions d ≥ 4.

Example: 4-cube and 24-cell.
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Homogeneity



Homogeneity of Ω0

A valuation is k-homogeneous if for all λ > 0 holds

φ(λP ) = λkφ(P ).

Lemma.

Ω0 is 1-homogeneous. (but Ω is not)

Proof. Ω(λP ;x) = vol(λP − x)◦

= vol(λ(P − x/λ))◦

= vol(λ−1(P − x/λ)◦)

= λ−d vol(P − x/λ)◦ = λ−d Ω(P ;x/λ).

Ω0(λP ;x) = λ−d Ω(P ; 0, x/λ) = λ−d
adjP (0, x/λ)∏
F LF (0, x/λ)

= λ−d
λ−(m−d−1) adjP (0, x)

λ−m
∏
F LF (0, x)

= λ
adjP (0, x)∏
F LF (0, x)

= λΩ0(P ;x).

�
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Homogeneity is great!

Theorem. (McMullen)

If Ω0 is 1-homogeneous, then it is Minkowski additive:

Ω0(P1 + · · ·+ Pn) = Ω0(P1) + · · ·+ Ω0(Pn).

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

Theorem.

If P is a centrally-symmetric polytope of odd dimension with drop(P ) > 0, then
each half Q of a central dissection has drop(Q) > 0 as well.
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A characterization in dimension three

Theorem.

If P is a 3-dimensional polytope, then

drop(P ) =


0 if P + (−P ) is not a zonotope

1 if P + (−P ) is a zonotope, but P itself is not

2 if P is a zonotope

.

We currently have no such characterization in higher dimensions.
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McMullen’s decomposition

Theorem. (McMullen)

If Ω0 is translation-invariant, 1-homogeneous and weakly continuous, then there

is a valuation φ on (d− 1)-dimensional cones so that

Ω0(P ) =
∑
e⊂P

`e φ(NP (e)).

Questions:

I How to verify weak continuity?

I How to determine the valuation φ?

Theorem.

Ω0(P ;x) = − 1

‖x‖2
∑
e⊂P

`e Ω
(
TP (e)

)
.
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McMullen’s decomposition for d = 2

Theorem.

For d = 2 holds
Ω0(P ;x) = − 1

‖x‖2
∑
e⊂P

`e
〈x, ue〉

.

Case study: the triangle

− adj∆
〈x, u1〉〈x, u2〉〈x, u3〉

= − 1

‖x‖2
( `1
〈x, u1〉

+
`2
〈x, u2〉

+
`3
〈x, u3〉

)
= − 1

‖x‖2
`1〈x, u2〉〈x, u3〉+ `2〈x, u1〉〈x, u3〉+ `3〈x, u1〉〈x, u2〉

〈x, u1〉〈x, u2〉〈x, u3〉

adj∆ ‖x‖2 = `1〈x, u2〉〈x, u3〉+ `2〈x, u1〉〈x, u3〉+ `3〈x, u1〉〈x, u2〉

adj∆ =
Area(∆)

CircR(∆)
.
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McMullen’s decomposition for simplices

Theorem.

Ω0(P ;x) = − 1

‖x‖2
∑
e

`e Ω
(
TP (e);x

)
.

First proof idea: triangulate P + prove theorem for simplices.

adj∆= Ω0(P ;x) ·
∏

F 〈x,uF 〉︷ ︸︸ ︷
det

u0 u1 . . . ud

h0 h1 · · · hd

‖x‖2

=
∑
i<j

(−1)i+j+d det

u0 · · · vi · · · vj · · · ud

0 · · · 1 · · · 1 · · · 0


︸ ︷︷ ︸

`ij Ω(TP (eij)) ·
∏

F 〈x,uF 〉

〈ui, x〉〈uj , x〉.
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Second proof idea: orthoschemes

v0 = (0, 0, 0, ..., 0),

v1 = (h1, 0, 0, ..., 0),

v2 = (h1, h2, 0, ..., 0),

v3 = (h1, h2, h3, ..., 0),

...

vd = (h1, h2, h3, ..., hd),

u0 = (h0, 0, 0, ..., 0, 0),

u1 = (−h2, h1, 0, ..., 0, 0),

u2 = (0,−h3, h2, ..., 0, 0),

u3 = (0, 0,−h4, h3, ..., 0, 0),

...

ud = (0, 0, 0, ..., 0,−hd+1),

d∑
i=1

x2
i = −

d∑
i,j=0
i<j

h2
i+1 + · · ·+ h2

j

hihi+1hjhj+1
(hi+1xi − hixi+1)(hj+1xj − hjxj+1).
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Thank you.


