ADJOINT DEGREES AND SCISSORS CONGRUENCE FOR POLYTOPES

Martin Winter

(joint work with Tom Baumbach, Ansgar Freyer and Julian Weigert)

TU Berlin + MPI

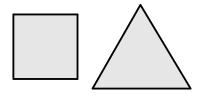
Mai 14, 2025

Scissors congruence

Two polytopes P and Q are scissors congruent if

$$P = P_1 \cup \cdots \cup P_n$$
 $Q = Q_1 \cup \cdots \cup Q_n$.

with $Q_i = S_i(P_i)$, where $S_i \in \text{Iso}(\mathbb{R}^d)$ are isometries.

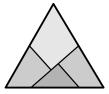


Scissors congruence

Two polytopes P and Q are scissors congruent if

$$P = P_1 \cup \cdots \cup P_n$$
 $Q = Q_1 \cup \cdots \cup Q_n$.

with $Q_i = S_i(P_i)$, where $S_i \in \text{Iso}(\mathbb{R}^d)$ are isometries.

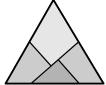


Scissors congruence

Two polytopes P and Q are scissors congruent if

$$P = P_1 \cup \cdots \cup P_n$$
 $Q = Q_1 \cup \cdots \cup Q_n$.

with $Q_i = S_i(P_i)$, where $S_i \in \mathrm{Iso}(\mathbb{R}^d)$ are isometries.



Theorem (Wallace, Bolyai, Gerwien; 1807/33/35)

Two polygons P,Q are scissors congruent if and only if vol(P) = vol(Q).

Given any two polyhedra P and Q of equal volume, is it always possible to dissect P into finitely many polyhedral pieces $P_1, ..., P_n$, which can then be reassembled to yield Q?

- Hilbert (1900)

Given any two polyhedra P and Q of equal volume, is it always possible to dissect P into finitely many polyhedral pieces $P_1, ..., P_n$, which can then be reassembled to yield Q?

- Hilbert (1900)

Theorem. (Dehn; 1901)

If $P,Q \subset \mathbb{R}^3$ are scissors congruent, then they have the same <u>Dehn invariant</u>.

$$D(P) := \sum_{e \in P} \operatorname{len}(e) \otimes_{\mathbb{Z}} \theta(e) / 2\pi \ \in \ \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R} / 2\pi \mathbb{Z}.$$

Given any two polyhedra P and Q of equal volume, is it always possible to dissect P into finitely many polyhedral pieces $P_1, ..., P_n$, which can then be reassembled to yield Q?

— HILBERT (1900)

Theorem. (Dehn; 1901)

If $P,Q \subset \mathbb{R}^3$ are scissors congruent, then they have the same <u>Dehn invariant</u>.

$$D(P) := \sum_{e \in P} \operatorname{len}(e) \otimes_{\mathbb{Z}} \theta(e) / 2\pi \ \in \ \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R} / 2\pi \mathbb{Z}.$$

But: $D(\mathsf{cube}) = 0$ and $D(\mathsf{tetrahedron}) \neq 0$.

Given any two polyhedra P and Q of equal volume, is it always possible to dissect P into finitely many polyhedral pieces $P_1, ..., P_n$, which can then be reassembled to yield Q?

— HILBERT (1900)

Theorem. (Dehn; 1901)

If $P,Q \subset \mathbb{R}^3$ are scissors congruent, then they have the same <u>Dehn invariant</u>.

$$D(P) := \sum_{e \subset P} \operatorname{len}(e) \otimes_{\mathbb{Z}} \theta(e) / 2\pi \ \in \ \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R} / 2\pi \mathbb{Z}.$$

But: $D(\mathsf{cube}) = 0$ and $D(\mathsf{tetrahedron}) \neq 0$.

Theorem. (Sydler; 1965)

 $P,Q\subset\mathbb{R}^3$ are scissors congruent if and only if they have the same volume and same Dehn invariant.

VALUATIONS

Whenever P, Q, $P\cap Q$ and $P\cup Q$ are polytopes, a **valuation** satisfies

$$\phi(P) + \phi(Q) = \phi(P \cup Q) + \phi(P \cap Q)$$

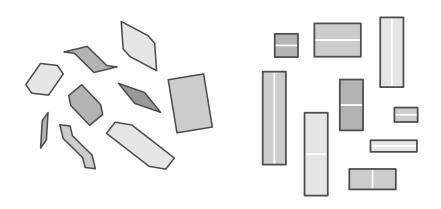
... but what we actually care about:

$$\phi(P_1 \cup \cdots \cup P_n) = \phi(P_1) + \cdots + \phi(P_n).$$

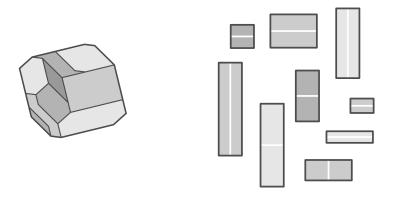
Examples:

- volume
- surface area measure
- Euler characteristic
- mixed volumes
- number of contained lattice points
- **.**..

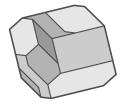
TWO COMPOSITION PUZZLES

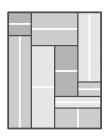


TWO COMPOSITION PUZZLES

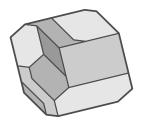


TWO COMPOSITION PUZZLES





Puzzle I

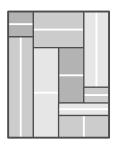


Let $\nu(P)$ be the surface area measure of $P \subset \mathbb{R}^d$ on \mathbb{S}^{d-1} .

$$\phi(P) := \nu(P) - \nu(-P)$$

Observe: a polygon P is centrally symmetric if and only if $\phi(P) = 0$.

Puzzle II



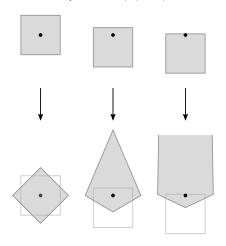
$$\phi(P) := \int_{P} e^{2\pi i(x_1 + x_2)} dx = \int_{P} e^{2\pi i x_1} dx \cdot \int_{P} e^{2\pi i x_2} dx$$

Observe: a rectangle P has an integer side length if and only if $\phi(P) = 0$.

Dual volumes and the canonical form

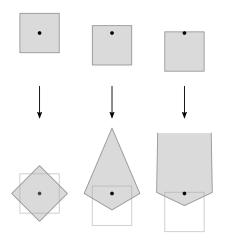
Polar duality

 $\text{(polar) dual } \dots \ P^\circ := \{x \in \mathbb{R}^d \mid \langle x,y \rangle \leq 1 \text{ for all } y \in P\}.$



Polar duality

 $(\text{polar}) \; \text{dual} \; \dots \; P^\circ := \{x \in \mathbb{R}^d \; | \; \langle x,y \rangle \leq 1 \; \text{for all} \; y \in P\}.$



Central new idea: the volume of the dual behaves valuative!

$$\Omega(P;x) := \operatorname{vol}(P-x)^{\circ} = \frac{p(x)}{q(x)}$$

Observe: this is a rational function in x.

 $\implies \Omega$ can be extended to points x outside of P.

Theorem. (Arkani-Hamed, Bai, Lam; 2017)

$$\Omega(P_1 \cup \cdots \cup P_n; x) = \Omega(P_1; x) + \cdots + \Omega(P_n; x).$$

$$\Omega(P;x) := \operatorname{vol}(P-x)^{\circ} = \frac{p(x)}{q(x)}$$

Observe: this is a rational function in x.

 $\implies \Omega$ can be extended to points x outside of P.

Theorem. (Arkani-Hamed, Bai, Lam; 2017)

$$\Omega(P_1 \cup \cdots \cup P_n; x) = \Omega(P_1; x) + \cdots + \Omega(P_n; x).$$

$$\Omega(P;x) \cdot \prod_{F} \ell_F(x) = r(x)$$

- \blacktriangleright $\ell_F(x) := h_F \langle u_F, x \rangle$... facet-defining linear form
- $ightharpoonup u_F$... unit normal vector
- $ightharpoonup h_F$... facet height

$$\Omega(P;x) := \operatorname{vol}(P-x)^{\circ} = \frac{p(x)}{q(x)}$$

Observe: this is a rational function in x.

 $\implies \Omega$ can be extended to points x outside of P.

Theorem. (Arkani-Hamed, Bai, Lam; 2017)

$$\Omega(P_1 \cup \cdots \cup P_n; x) = \Omega(P_1; x) + \cdots + \Omega(P_n; x).$$

 $\Omega(P;x) \cdot \prod_F \ell_F(x) = \operatorname{adjoint polynomial}_F 2 \operatorname{adj}_P(x)$

- $ightharpoonup \ell_F(x) := h_F \langle u_F, x \rangle \dots$ facet-defining linear form
- $ightharpoonup u_F$... unit normal vector
- $ightharpoonup h_F$... facet height

$$\Omega(P;x) := \operatorname{vol}(P-x)^{\circ} = \frac{\operatorname{adj}_{P}(x)}{\prod_{F} \ell_{F}(x)}$$

Observe: this is a rational function in x.

 $\implies \Omega$ can be extended to points x outside of P.

Theorem. (Arkani-Hamed, Bai, Lam; 2017)

$$\Omega(P_1 \cup \cdots \cup P_n; x) = \Omega(P_1; x) + \cdots + \Omega(P_n; x).$$

 $\Omega(P;x) \cdot \prod_{F} \ell_F(x) = \operatorname{adj}_{P}(x)$

- $hlimits_F(x) := h_F \langle u_F, x \rangle$... facet-defining linear form
- $ightharpoonup u_F$... unit normal vector
- $ightharpoonup h_F$... facet height

DUAL VOLUMES

canonical form...
$$\Omega(P;x) := \operatorname{vol}(P-x)^{\circ} = \frac{\operatorname{adj}_P(x)}{\prod_F \ell_F(x)}$$

Observe: this is a rational function in x.

 $\implies \Omega$ can be extended to points x outside of P.

Theorem. (Arkani-Hamed, Bai, Lam; 2017)

$$\Omega(P_1 \cup \cdots \cup P_n; x) = \Omega(P_1; x) + \cdots + \Omega(P_n; x).$$

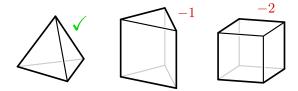
 $\Omega(P;x) \cdot \prod_{F} \ell_F(x) = \operatorname{adj}_{P}(x)$

- $hlimits_F(x) := h_F \langle u_F, x \rangle$... facet-defining linear form
- $ightharpoonup u_F$... unit normal vector
- $ightharpoonup h_F$... facet height

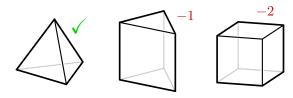
=: m

lacktriangle "Generically" the adjoint adj_P has degree $\#\mathrm{facets} - d - 1$.

- ▶ "Generically" the adjoint adj_P has degree #facets -d-1.
- ▶ **But:** this is <u>not</u> true in general.



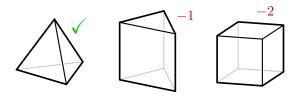
- =: m
- ▶ "Generically" the adjoint adj_P has degree #facets -d-1.
- **But:** this is not true in general.



We call this defficiency in degree the **degree drop** of P:

$$\operatorname{drop}(P) := (m - d - 1) - \operatorname{deg} \operatorname{adj}_{P}.$$

- =:m
- ▶ "Generically" the adjoint adj_P has degree #facets -d-1.
- ▶ **But:** this is not true in general.



We call this defficiency in degree the **degree drop** of P:

$$\operatorname{drop}(P) := (m - d - 1) - \operatorname{deg} \operatorname{adj}_{P}.$$

Example: for the *d*-cube $\Box_d := [-1,1]^d$ we have

$$\Omega(\Box_d; x) = \frac{\text{some constant}}{\prod_i (1 - x_i^2)} \implies \operatorname{drop}(\Box_d) = d - 1.$$

ADJOINT DEGREES UNDER COMPOSITION

Lemma.

$$\operatorname{drop}(P_1 \cup \cdots \cup P_n) \ge \min_i \operatorname{drop}(P_i).$$

ADJOINT DEGREES UNDER COMPOSITION

Lemma.

$$\operatorname{drop}(P_1 \cup \cdots \cup P_n) \ge \min_i \operatorname{drop}(P_i).$$

Proof.

▶ first, homogenize:

$$\Omega(P;x_0,x) := \frac{\operatorname{adj}_P(x_0,x)}{\prod_F \ell_F(x_0,x)} \quad \begin{array}{ll} \leftarrow \text{homogenized to degree } m-d-1 \\ \leftarrow \text{homogenized to degree } m \end{array}$$

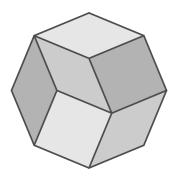
If $s := \operatorname{drop}(P_1 \cup \cdots \cup P_n)$ and $s_i := \operatorname{drop}(P_i)$, then

$$x_0^s \frac{p(x_0, x)}{\prod\limits_{F \subset P} \ell_F(x_0, x)} = \Omega(P \cup \dots \cup P_n; x_0, x)$$

$$= \sum_i \Omega(P_i; x_0, x) = x_0^{\min s_i} \sum_i \frac{p_i(x_0, x)}{\prod\limits_{F \subset P_i} \ell_F(x_0, x)}.$$

$$\implies s \ge \min s_i$$

Martin Winter (with Tom Baumbach, Ansgar Freyer and Julian Weigert)



Questions:

- ▶ What characterizes the class of polytopes with drop s?
- How to tell the drop of a polytope from geometric/combinatorial characteristics?

Drop is inherited by faces

Lemma.

If $F \subset P$ is a facet, then

$$drop(F) \ge drop(P) - 1$$

with equality if and only of P has a facet parallel to F.

Proof.

Proof.
$$\begin{aligned} m_F - (d-1) - 1 - s_F & \leq m - d - 1 - s \\ \frac{\operatorname{adj}_F(x)}{\prod_{G < F} \ell_G(x)} = \Omega(F; x) &= \frac{\operatorname{adj}_P(x)|_F}{\prod_{G \neq F} \ell_G(x)|_F} \\ & \Longrightarrow s_F \geq s - 1 \end{aligned}$$

$$m - \begin{cases} 2 & \text{has parallel facet} \\ 1 & \text{no parallel facet} \end{cases}$$

Drop is inherited by faces

Lemma.

If $F \subset P$ is a facet, then

$$drop(F) \ge drop(P) - 1$$

with equality if and only of P has a facet parallel to F.

Proof.

Proof.
$$\begin{aligned} m_F - (d-1) - 1 - s_F & \leq m - d - 1 - s \\ \frac{\operatorname{adj}_F(x)}{\prod_{G < F} \ell_G(x)} = \Omega(F; x) &= \frac{\operatorname{adj}_P(x)|_F}{\prod_{G \neq F} \ell_G(x)|_F} \\ & \Longrightarrow s_F > s - 1 \end{aligned}$$
 $m - \begin{cases} 2 & \text{has parallel facet} \\ 1 & \text{no parallel facet} \end{cases}$

Corollary

A d-polytope has $drop(P) \leq d-1$.

Question: which polytopes have maximal degree drop?

Lemma.

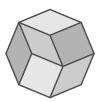
A centrally symmetric polygon P has drop(P) = 1. (which is maximal)

Lemma.

A centrally symmetric polygon P has drop(P) = 1. (which is maximal)

Proof I.

▶ a cs polygon decomposes into parallelograms



Lemma.

A centrally symmetric polygon P has drop(P) = 1. (which is maximal)

Proof I.

► a cs polygon decomposes into parallelograms



Note: zonotopes also decompose into "skew cubes" (parallelepipedes).

Lemma.

Zonotopes have maximal degree drop d-1.

Lemma.

A centrally symmetric polygon P has drop(P) = 1.

Proof II.

- ▶ We have $\Omega(P; x) = \Omega(P; -x)$ due to symmetry.
- ▶ Since $\Omega = \operatorname{adj}_P / \prod_F \ell_F$, either both adj_P and $\prod_F \ell_F$ even, or both odd.
- ightharpoonup Since P is cs, $\deg \prod_F \ell_F = m$ is even $\implies \deg \operatorname{adj}_P$ is even
- ${\color{red}\blacktriangleright} \ \ \mathsf{Hence} \ \operatorname{drop}(P) = (m-2-1) \deg \operatorname{adj}_P \ \mathsf{is} \ \mathsf{odd} \ \Longrightarrow \ \operatorname{drop}(P) = 1.$

Lemma.

A centrally symmetric polygon P has drop(P) = 1.

Proof II.

- ▶ We have $\Omega(P; x) = \Omega(P; -x)$ due to symmetry.
- ▶ Since $\Omega = \operatorname{adj}_P / \prod_F \ell_F$, either both adj_P and $\prod_F \ell_F$ even, or both odd.
- ▶ Since P is cs, $\deg \prod_F \ell_F = m$ is even $\implies \deg \operatorname{adj}_P$ is even
- ▶ Hence $\operatorname{drop}(P) = (m-2-1) \operatorname{deg} \operatorname{adj}_P$ is odd $\implies \operatorname{drop}(P) = 1$.

Note: Argument applies verbatim in higher dimensions.

Lemma.

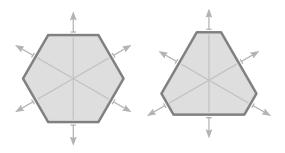
If P is centrally symmetric, then $\deg \operatorname{adj}_P$ is even, or equivalently,

$$drop(P)$$
 is
$$\begin{cases} even & \text{if } d \text{ is odd} \\ odd & \text{if } d \text{ is even} \end{cases}$$

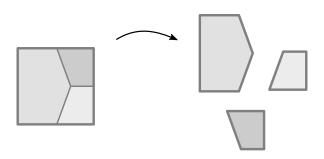
In particular, cs polytopes in even dimension have $drop(P) \ge 1$.

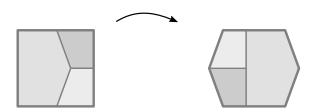
WHAT ELSE HAS A DROP?

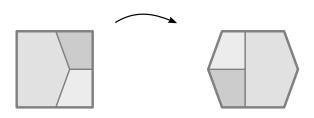
Observation: for maximal drop facets must come in parallel pairs.



Question: can a non-centrally symmetric polygon have a drop?





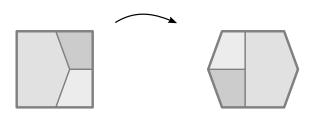


$$\phi(P) = \phi(P_1 \cup \dots \cup P_n)$$

$$= \phi(P_1) + \dots + \phi(P_n)$$

$$= \phi(P_1 + t_1) + \dots + \phi(P_n + t_n)$$

$$= \phi((P_1 + t_1) \cup \dots \cup (P_n + t_n)) = \phi(Q)$$



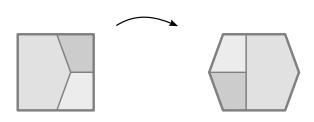
$$\phi(P) = \phi(P_1 \cup \cdots \cup P_n)$$

$$= \phi(P_1) + \cdots + \phi(P_n)$$

$$\stackrel{?}{=} \phi(P_1 + t_1) + \cdots + \phi(P_n + t_n)$$

$$= \phi((P_1 + t_1) \cup \cdots \cup (P_n + t_n)) = \phi(Q)$$

TRANSLATION SCISSORS CONGRUENCE



$$\phi(P) = \phi(P_1 \cup \cdots \cup P_n)$$

$$= \phi(P_1) + \cdots + \phi(P_n)$$

$$\stackrel{?}{=} \phi(P_1 + t_1) + \cdots + \phi(P_n + t_n)$$

$$= \phi((P_1 + t_1) \cup \cdots \cup (P_n + t_n)) = \phi(Q)$$

A NEW TRANSLATION-INVARIANT VALUATION

 Ω_{f}

The view from infinity

$$\Omega_0(P;x) := \Omega(P;x_0,x)|_{x_0=0} = \frac{\operatorname{adj}_P(x_0,x)|_{x_0=0}}{\prod_F \langle u_F, x \rangle}.$$

One can view this as

- restricting Ω to the hyperplane at infinite (given by $x_0 = 0$).
- restricting the numerator (resp. denominator) to the monomials of degree m-d-1 (resp. m).

THE VIEW FROM INFINITY

$$\Omega_0(P;x) := \Omega(P;x_0,x)|_{x_0=0} = \frac{\operatorname{adj}_P(x_0,x)|_{x_0=0}}{\prod_F \langle u_F, x \rangle}.$$

One can view this as

- restricting Ω to the hyperplane at infinite (given by $x_0 = 0$).
- restricting the numerator (resp. denominator) to the monomials of degree m-d-1 (resp. m).

Lemma.

 Ω_0 is a translation-invariant valuation. (but Ω is not)

Proof idea. Translation preserve the leading coefficients of a polynomial:

$$p(x) = \sum_{n} p_n x^n \longrightarrow p(x+t) = \sum_{n} p_n (x+t)^n.$$

How to use Ω_0

Observation: $\Omega_0(P) = 0$ if and only if drop(P) > 0.

Theorem.

If P and Q are translation scissors congruent, then

$$drop(P) > 0 \iff drop(Q) > 0.$$

But ...

- ▶ We can only distinguish drop vs. no-drop.
- We lose all information about the precise value of the degree drop

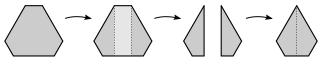
Central symmetry \Leftrightarrow drop = 1

Theorem.

For d=2 we have drop(P)>0 if and only if P is centrally-symmetric.

Proof.

ightharpoonup every edge needs a parallel edge \implies must be a 2n-gon



 $hildspace{1mu} \Omega_0(P)=0$ and this is preserved in all steps $\dexisp 2$

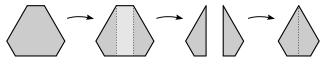
Central symmetry \Leftrightarrow drop = 1

Theorem.

For d=2 we have drop(P)>0 if and only if P is centrally-symmetric.

Proof.

ightharpoonup every edge needs a parallel edge \implies must be a 2n-gon



 $lackbox{ }\Omega_0(P)=0$ and this is preserved in all steps $\dextstyle 2$

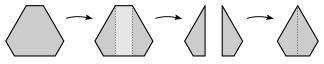
Central symmetry \Leftrightarrow drop = 1

Theorem.

For d=2 we have drop(P)>0 if and only if P is centrally-symmetric.

Proof.

ightharpoonup every edge needs a parallel edge \implies must be a 2n-gon



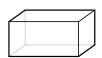
 $lackbox{}{}$ $\Omega_0(P)=0$ and this is preserved in all steps $\darket{1}{/}$

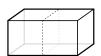
Theorem.

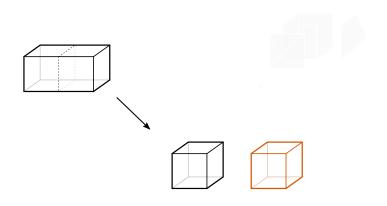
P has maximal degree drop drop(P) = d - 1 iff P is a zonotope.

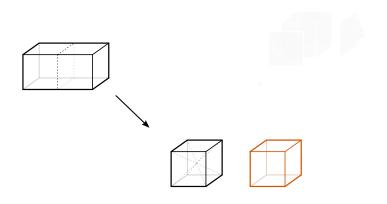
Proof.

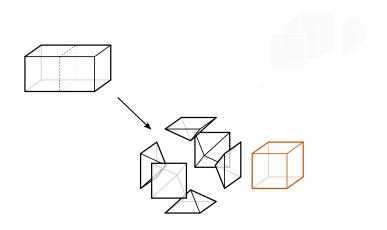
- ▶ if P has maximal drop, then so do its faces.
- ▶ all faces centrally symmetric ⇒ zonotope.

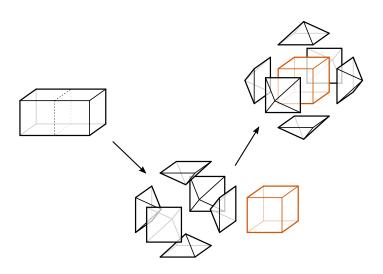


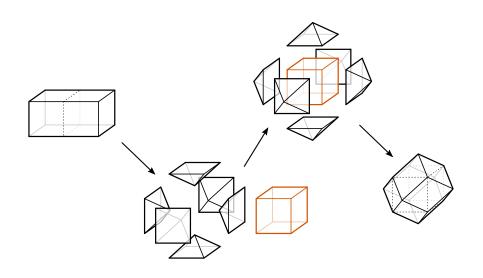


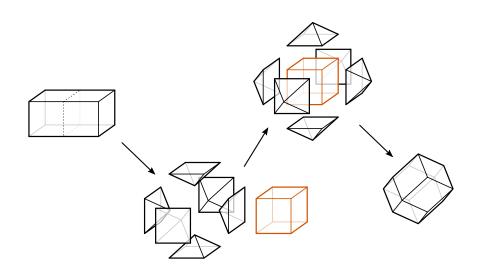


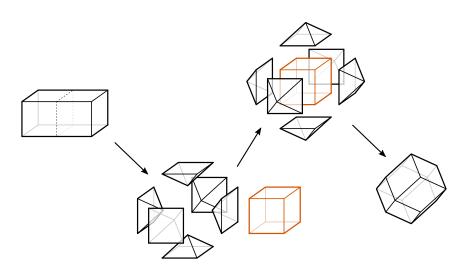












Question: Are zonotopes only translation scissors congruent to zonotopes? or stronger, is the precise degree drop preserved under TSC?

YES AND NO

Theorem.

In dimension $d \leq 3$ translation scissors congruence preserves the degree drop.

Proof. (for d = 3)

- if drop(P) = 0 then drop(Q) = 0.
- if $\operatorname{drop}(P)=2$ then P is a zonotop, hence centrally symmetric. Both $\operatorname{drop}>0$ and cs are preserved by TSC. But cs 3-polytopes have an even drop. Hence $\operatorname{drop}(Q)=2$ as well.

This is not true in dimensions $d \geq 4$.

Example: 4-cube and 24-cell.

YES AND NO

Theorem.

In dimension $d \leq 3$ translation scissors congruence preserves the degree drop.

Proof. (for d = 3)

- ightharpoonup if drop(P) = 0 then drop(Q) = 0.
- if $\operatorname{drop}(P)=2$ then P is a zonotop, hence centrally symmetric. Both $\operatorname{drop}>0$ and cs are preserved by TSC. But cs 3-polytopes have an even drop. Hence $\operatorname{drop}(Q)=2$ as well.
- $\qquad \operatorname{drop}(P) = 1 \implies \operatorname{drop}(Q) = 1 \text{ follows from } \operatorname{drop} \in \{0, 1, 2\}.$

This is not true in dimensions $d \geq 4$.

Example: 4-cube and 24-cell.

Lemma.

In dimension d=3, drop(P)>0 if and only if P+(-P) is a zonotope.

Homogeneity of Ω_0

A valuation is k-homogeneous if for $\lambda > 0$ holds

$$\phi(\lambda P) = \lambda^k \phi(P).$$

Homogeneity of Ω_0

A valuation is k-homogeneous if for $\lambda > 0$ holds

$$\phi(\lambda P) = \lambda^k \phi(P).$$

Lemma.

 Ω_0 is 1-homogeneous. (but Ω is not)

$$\begin{split} \textit{Proof.} \quad & \Omega(\lambda P; x) = \operatorname{vol}(\lambda P - x)^{\circ} \\ & = \operatorname{vol}(\lambda (P - x/\lambda))^{\circ} \\ & = \operatorname{vol}(\lambda^{-1}(P - x/\lambda)^{\circ}) \\ & = \lambda^{-d} \operatorname{vol}(P - x/\lambda)^{\circ} = \lambda^{-d} \Omega(P; x/\lambda). \\ & \Omega_{0}(\lambda P; x) = \lambda^{-d} \Omega(P; 0, x/\lambda) = \lambda^{-d} \frac{\operatorname{adj}_{P}(0, x/\lambda)}{\prod_{F} \ell_{F}(0, x/\lambda)} \\ & = \lambda^{-d} \frac{\lambda^{-(m-d-1)} \operatorname{adj}_{P}(0, x)}{\lambda^{-m} \prod_{F} \ell_{F}(0, x)} = \lambda \frac{\operatorname{adj}_{P}(0, x)}{\prod_{F} \ell_{F}(0, x)} = \lambda \Omega_{0}(P; x). \end{split}$$

HOMOGENEITY IS GREAT!

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is **Minkowski additive**:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

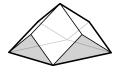
Homogeneity is great!

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is **Minkowski additive**:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.



Homogeneity is great!

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is **Minkowski additive**:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

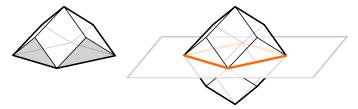
Homogeneity is great!

Theorem. (McMullen)

If Ω_0 is 1-homogeneous, then it is **Minkowski additive**:

$$\Omega_0(P_1 + \dots + P_n) = \Omega_0(P_1) + \dots + \Omega_0(P_n).$$

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.



Theorem.

If P is a centrally-symmetric polytope of odd dimension with drop(P) > 0, then each half Q of a central dissection has drop(Q) > 0 as well.

McMullen's decomposition

Theorem. (McMullen)

If Ω_0 is translation-invariant, 1-homogeneous and weakly continuous, then there is a valuation ϕ on (d-1)-cones so that

$$\Omega_0(P) = \sum_{e \subset P} \operatorname{len}(e)\phi(N_P(e)).$$

Questions:

- How to verify weak continuity?
- ▶ How to determine the valuation ϕ ?

McMullen's decomposition

Theorem. (McMullen)

If Ω_0 is translation-invariant, 1-homogeneous and weakly continuous, then there is a valuation ϕ on (d-1)-cones so that

$$\Omega_0(P) = \sum_{e \subset P} \operatorname{len}(e)\phi(N_P(e)).$$

Questions:

- How to verify weak continuity?
- ▶ How to determine the valuation ϕ ?

Theorem. (Baumbach, Freyer, Weigert, W.; 2025+)

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_{e} \operatorname{len}(e) \Omega(T_P(e)).$$

Theorem.

For d=2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_{e} \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

Theorem.

For d=2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

$$\frac{\operatorname{adj}_{\Delta}}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle} = -\frac{1}{\|x\|^{2}} \left(\frac{\ell_{1}}{\langle x, u_{1} \rangle} + \frac{\ell_{2}}{\langle x, u_{2} \rangle} + \frac{\ell_{3}}{\langle x, u_{3} \rangle} \right)$$

$$= -\frac{1}{\|x\|^{2}} \frac{\ell_{1} \langle x, u_{2} \rangle \langle x, u_{3} \rangle + \ell_{2} \langle x, u_{1} \rangle \langle x, u_{3} \rangle + \ell_{3} \langle x, u_{1} \rangle \langle x, u_{2} \rangle}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle}$$

Theorem.

For d=2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

$$\frac{\operatorname{adj}_{\Delta}}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle} = -\frac{1}{\|x\|^{2}} \left(\frac{\ell_{1}}{\langle x, u_{1} \rangle} + \frac{\ell_{2}}{\langle x, u_{2} \rangle} + \frac{\ell_{3}}{\langle x, u_{3} \rangle} \right)
= -\frac{1}{\|x\|^{2}} \frac{\ell_{1} \langle x, u_{2} \rangle \langle x, u_{3} \rangle + \ell_{2} \langle x, u_{1} \rangle \langle x, u_{3} \rangle + \ell_{3} \langle x, u_{1} \rangle \langle x, u_{2} \rangle}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle}$$

Theorem.

For d=2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

$$\begin{split} \frac{\operatorname{adj}_{\Delta}}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle} &= -\frac{1}{\|x\|^{2}} \left(\frac{\ell_{1}}{\langle x, u_{1} \rangle} + \frac{\ell_{2}}{\langle x, u_{2} \rangle} + \frac{\ell_{3}}{\langle x, u_{3} \rangle} \right) \\ &= -\frac{1}{\|x\|^{2}} \frac{\ell_{1} \langle x, u_{2} \rangle \langle x, u_{3} \rangle + \ell_{2} \langle x, u_{1} \rangle \langle x, u_{3} \rangle + \ell_{3} \langle x, u_{1} \rangle \langle x, u_{2} \rangle}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle} \end{split}$$

$$\mathrm{adj}_{\Delta} = -\frac{1}{\|x\|^2} \left(\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle \right)$$

Theorem.

For d=2 holds

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_e \frac{\operatorname{len}(e)}{\langle x, u_e \rangle}.$$

$$\begin{split} \frac{\operatorname{adj}_{\Delta}}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle} &= -\frac{1}{\|x\|^{2}} \Big(\frac{\ell_{1}}{\langle x, u_{1} \rangle} + \frac{\ell_{2}}{\langle x, u_{2} \rangle} + \frac{\ell_{3}}{\langle x, u_{3} \rangle} \Big) \\ &= -\frac{1}{\|x\|^{2}} \frac{\ell_{1} \langle x, u_{2} \rangle \langle x, u_{3} \rangle + \ell_{2} \langle x, u_{1} \rangle \langle x, u_{3} \rangle + \ell_{3} \langle x, u_{1} \rangle \langle x, u_{2} \rangle}{\langle x, u_{1} \rangle \langle x, u_{2} \rangle \langle x, u_{3} \rangle} \end{split}$$

$$\operatorname{adj}_{\Delta} = -\frac{1}{\|x\|^2} \left(\ell_1 \langle x, u_2 \rangle \langle x, u_3 \rangle + \ell_2 \langle x, u_1 \rangle \langle x, u_3 \rangle + \ell_3 \langle x, u_1 \rangle \langle x, u_2 \rangle \right)$$
$$= \frac{\operatorname{Area}(\Delta)}{\operatorname{CircR}(\Delta)}.$$

Composition of Ω_0

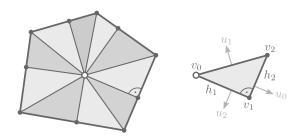
Theorem. (Baumbach, Freyer, Weigert, W.; 2025+)

$$\Omega_0(P;x) = -\frac{1}{\|x\|^2} \sum_{e} \operatorname{len}(e) \Omega(T_P(e)).$$

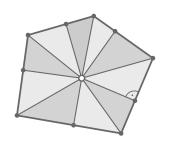
First proof idea: triangulate $P+\mathsf{proof}$ theorem for simplices.

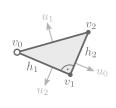
$$\frac{\operatorname{adj}_{\triangle} = \Omega_{0}(P;x) \cdot \prod_{F} \langle u_{F}, x \rangle}{\operatorname{det} \begin{pmatrix} | & | & | \\ u_{0} & u_{1} & \dots & u_{d} \\ | & | & | & | \\ h_{0} & h_{1} & \dots & h_{d} \end{pmatrix}} ||x||^{2} \\
= -\sum_{i < j} \operatorname{det} \begin{pmatrix} | & | & | & | & | \\ u_{0} & \dots & v_{i} & \dots & v_{j} & \dots & u_{d} \\ | & | & | & | & | \\ 0 & \dots & 1 & \dots & 1 & \dots & 0 \end{pmatrix} \langle u_{i}, x \rangle \langle u_{j}, x \rangle.$$

SECOND PROOF IDEA: ORTHOSCHEMES



SECOND PROOF IDEA: ORTHOSCHEMES





$$v_0 = (0, 0, 0, \dots, 0),$$

$$v_1 = (h_1, 0, 0, \dots, 0),$$

$$v_2 = (h_1, h_2, 0, \dots, 0),$$

$$v_3 = (h_1, h_2, h_3, \dots, 0),$$

$$\vdots$$

$$v_d = (h_1, h_2, h_3, \dots, h_d),$$

$$u_0 = (h_0, 0, 0, \dots, 0, 0),$$

$$u_1 = (-h_2, h_1, 0, \dots, 0, 0),$$

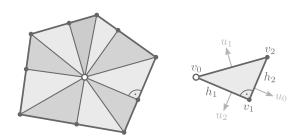
$$u_2 = (0, -h_3, h_2, \dots, 0, 0),$$

$$u_3 = (0, 0, -h_4, h_3, \dots, 0, 0),$$

$$\vdots$$

$$u_d = (0, 0, 0, \dots, 0, -h_{d+1}),$$

SECOND PROOF IDEA: ORTHOSCHEMES



$$\sum_{i=1}^{d} x_i^2 = -\sum_{\substack{i,j=0\\i < j}}^{d} \frac{h_{i+1}^2 + \dots + h_j^2}{h_i h_{i+1} h_j h_{j+1}} (h_{i+1} x_i - h_i x_{i+1}) (h_{j+1} x_j - h_j x_{j+1}).$$

Thank you.

