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Scissors congruence

Two polytopes P and Q are scissors congruent if

P = P1 ·∪ · · · ·∪ Pn Q = Q1 ·∪ · · · ·∪Qn.

with Qi = Si(Pi), where Si ∈ Iso(Rd) are isometries.

Theorem (Wallace, Bolyai, Gerwien; 1807/33/35)

Two polygons P,Q are scissors congruent if and only if vol(P ) = vol(Q).
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Hilbert’s Third Problem

Given any two polyhedra P and Q of equal volume, is it always possible
to dissect P into finitely many polyhedral pieces P1, ..., Pn, which can
then be reassembled to yield Q?

– Hilbert (1900)

Theorem. (Dehn; 1901)

If P,Q ⊂ R3 are scissors congruent, then they have the same Dehn invariant.

D(P ) :=
∑
e⊂P

len(e)⊗Z θ(e)/2π ∈ R⊗Z R/2πZ.

But: D(cube) = 0 and D(tetrahedron) 6= 0.

Theorem. (Sydler; 1965)

P,Q ⊂ R3 are scissors congruent if and only if they have the same volume and
same Dehn invariant.
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Valuations

Whenever P , Q, P ∩Q and P ∪Q are polytopes, a valuation satisfies

φ(P ) + φ(Q) = φ(P ∪Q) + φ(P ∩Q)

... but what we actually care about:

φ(P1 ·∪ · · · ·∪ Pn) = φ(P1) + · · ·+ φ(Pn).

Examples:

I volume

I Dehn invariant

I surface area measure

I Euler characteristic

I mixed volumes

I number of contained lattice points

I ...
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Two composition puzzles
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Puzzle I

Let ν(P ) be the surface area measure of P ⊂ Rd on Sd−1.

φ(P ) := ν(P )− ν(−P )

Observe: a polygon P is centrally symmetric if and only if φ(P ) = 0.
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Puzzle II

φ(P ) :=

∫
P

e2πi(x1+x2) dx =

∫
P

e2πix1 dx ·
∫
P

e2πix2 dx

Observe: a rectangle P has an integer side length if and only if φ(P ) = 0.
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Dual volumes and

the canonical form

Ω



Polar duality

(polar) dual ... P ◦ := {x ∈ Rd | 〈x, y〉 ≤ 1 for all y ∈ P}.

Central new idea: the volume of the dual behaves valuative!
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Dual volumes

canonical form...

Ω(P ;x) := vol(P − x)◦ =
p(x)

q(x)

adjP (x)∏
F `F (x)

Observe: this is a rational function in x.

=⇒ Ω can be extended to points x outside of P .

Theorem. (Arkani-Hamed, Bai, Lam; 2017)

Ω(P1 ·∪ · · · ·∪ Pn;x) = Ω(P1;x) + · · ·+ Ω(Pn;x).

Ω(P ;x) ·
∏
F

`F (x) = r(x)

... adjoint polynomial

adjP (x)

I `F (x) := hF − 〈uF , x〉 ... facet-defining linear form

I uF ... unit normal vector

I hF ... facet height
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Adjoint degrees

I “Generically” the adjoint adjP has degree

=:m︷ ︸︸ ︷
#facets− d− 1.

I But: this is not true in general.

We call this defficiency in degree the degree drop of P :

drop(P ) := (m− d− 1)− deg adjP .

Example: for the d-cube �d := [−1, 1]d we have

Ω(�d;x) =
some constant∏

i(1− x2
i )

=⇒ drop(�d) = d− 1.
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Adjoint degrees under composition

Lemma.

drop(P1 ·∪ · · · ·∪ Pn) ≥ min
i

drop(Pi).

Proof.

I first, homogenize:

Ω(P ;x0, x) :=
adjP (x0, x) ← homogenized to degree m− d− 1∏
F `F (x0, x) ← homogenized to degree m

I If s := drop(P1 ·∪ · · · ·∪ Pn) and si := drop(Pi), then

xs0
p(x0, x)∏

F⊂P
`F (x0, x)

= Ω(P ·∪ · · · ·∪ Pn;x0, x)

=
∑
i

Ω(Pi;x0, x) = xmin si
0

∑
i

pi(x0, x)∏
F⊂Pi

`F (x0, x)
.

=⇒ s ≥ min si �
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Adjoint degrees under composition

Questions:

I What other polytopes have a drop?

I What characterizes polytopes with a particular drop s?
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Drop is inherited by faces

Lemma.

If F ⊂ P is a facet, then

drop(F ) ≥ drop(P )− 1

with equality if and only of P has a facet parallel to F .

Proof. mF − (d− 1)− 1− sF

adjF (x)∏
G<F `G(x)

mF

= Ω(F ;x) =

≤ m− d− 1− s

adjP (x)|F∏
G6=F `G(x)|F

m−
{

2 has parallel facet

1 no parallel facet=⇒ sF ≥ s− 1 �

Corollary

A d-polytope has drop(P ) ≤ d− 1.

Question: which polytopes have maximal degree drop?
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Centrally symmetric polygons

Lemma.

A centrally symmetric polygon P has drop(P ) = 1. (which is maximal)

Proof I.

I a cs polygon decomposes into parallelograms �

Note: zonotopes also decompose into “skew cubes” (parallelepipedes).

Lemma.

Zonotopes have maximal degree drop d− 1.
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Centrally symmetric polygons

Lemma.

A centrally symmetric polygon P has drop(P ) = 1.

Proof II.
I We have Ω(P ;x) = Ω(P ;−x) due to symmetry.

I Since Ω = adjP /
∏

F `F , either both adjP and
∏

F `F even, or both odd.

I Since P is cs, deg
∏

F `F = m is even =⇒ deg adjP is even

I Hence drop(P ) = (m− 2− 1)− deg adjP is odd =⇒ drop(P ) = 1. �

Note: Argument applies verbatim in higher dimensions.

Lemma.

If P is centrally symmetric, then deg adjP is even, or equivalently,

drop(P ) is

{
even if d is odd

odd if d is even

In particular, cs polytopes in even dimension have drop(P ) ≥ 1.
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What else has a drop?

Observation: for maximal drop facets must come in parallel pairs.

Question: can a non-centrally symmetric polygon have a drop?

“Proof” that the answer is No:
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Translation scissors congruence

φ(P ) = φ(P1 ·∪ · · · ·∪ Pn)

= φ(P1) + · · ·+ φ(Pn)

?

= φ(P1 + t1) + · · ·+ φ(Pn + tn)

= φ
(
(P1 + t1) ·∪ · · · ·∪ (Pn + tn)

)
= φ(Q)
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A new translation-invariant

valuation

Ω0



The view from infinity

Ω0(P ;x) := Ω(P ;x0, x)|x0=0 =
adjP (x0, x)|x0=0∏

F 〈uF , x〉
.

One can view this as

I restricting Ω to the hyperplane at infinite (given by x0 = 0).

I restricting the numerator (resp. denominator) to the monomials of degree
m− d− 1 (resp. m).

Lemma.
Ω0 is a translation-invariant valuation. (but Ω is not)

Proof idea. Translation preserve the leading coefficients of a polynomial:

p(x) =
∑
n

pnx
n −→ p(x+ t) =

∑
n

pn(x+ t)n.
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How to use Ω0

Observation: Ω0(P ) = 0 if and only if drop(P ) > 0.

Theorem.

If P and Q are translation scissors congruent, then

drop(P ) > 0 ⇐⇒ drop(Q) > 0.

But ...

I We can only distinguish drop vs. no-drop.

I We lose all information about the precise value of the degree drop

Martin Winter (with Tom Baumbach, Ansgar Freyer and Julian Weigert) 18 / 27



Central symmetry ⇔ drop = 1

Theorem.

For d = 2 we have drop(P ) > 0 if and only if P is centrally-symmetric.

Proof.
I every edge needs a parallel edge =⇒ must be a 2n-gon

I Ω0(P ) = 0 and this is preserved in all steps  �

Theorem.

P has maximal degree drop drop(P ) = d− 1 iff P is a zonotope.

Proof.
I if P has maximal drop, then so do its faces.

I all faces centrally symmetric =⇒ zonotope. �
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Question: Are zonotopes only translation scissors congruent to zonotopes?
or stronger, is the precise degree drop preserved under TSC?
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Yes and no

Theorem.

In dimension d ≤ 3 translation scissors congruence preserves the degree drop.

Proof. (for d = 3)

I if drop(P ) = 0 then drop(Q) = 0.

I if drop(P ) = 2 then P is a zonotop, hence centrally symmetric. Both
drop > 0 and cs are preserved by TSC. But cs 3-polytopes have an even
drop. Hence drop(Q) = 2 as well.

I drop(P ) = 1 =⇒ drop(Q) = 1 follows from drop ∈ {0, 1, 2}. �

This is not true in dimensions d ≥ 4.

Example: 4-cube and 24-cell.

Lemma.

In dimension d = 3, drop(P ) > 0 if and only if P + (−P ) is a zonotope.
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Homogeneity



Homogeneity of Ω0

A valuation is k-homogeneous if for λ > 0 holds

φ(λP ) = λkφ(P ).

Lemma.

Ω0 is 1-homogeneous. (but Ω is not)

Proof. Ω(λP ;x) = vol(λP − x)◦

= vol(λ(P − x/λ))◦

= vol(λ−1(P − x/λ)◦)

= λ−d vol(P − x/λ)◦ = λ−d Ω(P ;x/λ).

Ω0(λP ;x) = λ−d Ω(P ; 0, x/λ) = λ−d
adjP (0, x/λ)∏
F `F (0, x/λ)

= λ−d
λ−(m−d−1) adjP (0, x)

λ−m
∏

F `F (0, x)
= λ

adjP (0, x)∏
F `F (0, x)

= λΩ0(P ;x).

�
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Homogeneity is great!

Theorem. (McMullen)

If Ω0 is 1-homogeneous, then it is Minkowski additive:

Ω0(P1 + · · ·+ Pn) = Ω0(P1) + · · ·+ Ω0(Pn).

Observation: Minkowski sums of low-dimensional polytopes have a degree drop.

Theorem.

If P is a centrally-symmetric polytope of odd dimension with drop(P ) > 0, then
each half Q of a central dissection has drop(Q) > 0 as well.
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McMullen’s decomposition

Theorem. (McMullen)

If Ω0 is translation-invariant, 1-homogeneous and weakly continuous, then there

is a valuation φ on (d− 1)-cones so that

Ω0(P ) =
∑
e⊂P

len(e)φ(NP (e)).

Questions:

I How to verify weak continuity?

I How to determine the valuation φ?

Theorem. (Baumbach, Freyer, Weigert, W.; 2025+)

Ω0(P ;x) = − 1

‖x‖2
∑
e

len(e) Ω
(
TP (e)

)
.
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McMullen’s decomposition for d = 2

Theorem.

For d = 2 holds

Ω0(P ;x) = − 1

‖x‖2
∑
e

len(e)

〈x, ue〉
.

Case study: the triangle

adj∆
〈x, u1〉〈x, u2〉〈x, u3〉

= − 1

‖x‖2
( `1
〈x, u1〉

+
`2
〈x, u2〉

+
`3
〈x, u3〉

)
= − 1

‖x‖2
`1〈x, u2〉〈x, u3〉+ `2〈x, u1〉〈x, u3〉+ `3〈x, u1〉〈x, u2〉

〈x, u1〉〈x, u2〉〈x, u3〉

adj∆ = − 1

‖x‖2
(
`1〈x, u2〉〈x, u3〉+ `2〈x, u1〉〈x, u3〉+ `3〈x, u1〉〈x, u2〉

)

=
Area(∆)

CircR(∆)
.
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Composition of Ω0

Theorem. (Baumbach, Freyer, Weigert, W.; 2025+)

Ω0(P ;x) = − 1

‖x‖2
∑
e

len(e) Ω
(
TP (e)

)
.

First proof idea: triangulate P + proof theorem for simplices.

adj∆= Ω0(P ;x) ·
∏

F 〈uF ,x〉︷ ︸︸ ︷
det

u0 u1 . . . ud

h0 h1 · · · hd

‖x‖2

= −
∑
i<j

det

u0 · · · vi · · · vj · · · ud

0 · · · 1 · · · 1 · · · 0


︸ ︷︷ ︸

len(eij) Ω(TP (eij)) ·
∏

F 〈uF ,x〉

〈ui, x〉〈uj , x〉.
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Second proof idea: orthoschemes

v0 = (0, 0, 0, ..., 0),

v1 = (h1, 0, 0, ..., 0),

v2 = (h1, h2, 0, ..., 0),

v3 = (h1, h2, h3, ..., 0),

...

vd = (h1, h2, h3, ..., hd),

u0 = (h0, 0, 0, ..., 0, 0),

u1 = (−h2, h1, 0, ..., 0, 0),

u2 = (0,−h3, h2, ..., 0, 0),

u3 = (0, 0,−h4, h3, ..., 0, 0),

...

ud = (0, 0, 0, ..., 0,−hd+1),

d∑
i=1

x2
i = −

d∑
i,j=0
i<j

h2
i+1 + · · ·+ h2

j

hihi+1hjhj+1
(hi+1xi − hixi+1)(hj+1xj − hjxj+1).
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Thank you.


