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The setting: convex polytopes

P = conv{p1, ..., pn} ⊂ Rd

I always convex

I general dimension d ≥ 2

I general geometry & combinatorics (not only simple/simplicial/lattice/...)

I always of full dimension
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The combinatorics of a polytope

face lattice
∼= combinatorial type
∼= (full) combinatorics
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Geometric realizations

isometric
linearly

equivalent
combinatorially

equivalent

same face lattice
=
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Reconstruction of
polytopes



Reconstruction of polytopes

“In how far is a polytope determined by partial combinatorial and geometric
data, up to isometry, affine transformation or combinatorial equivalence?”

reconstructing
combinatorics

reconstructing
geometry
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Reconstructing combinatorics (d = 3)

Question I: Is this the edge graph of a polyhedron? (Steinitz problem)

−→ planar X 3-connected X (Steinitz’ theorem)

Question II: If yes, what is the polyhedron’s full combinatorics?
−→ faces are non-separating induced cycles
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Reconstructing combinatorics (d ≥ 4)

Question I: Is this the edge graph of a polytope?

−→ no useful criteria known 7

Question II: If yes, what is the polytope’s dimension and full combinatorics?

−→ polytope might not be unique 7
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Reconstructing geometry

Given the full combinatorics, can we reconstruct from ...

I edge lengths 7

}
edge lengths + dihedral angles X (Stoker)

I dihedral angles 7

Cauchy’s rigidity theorem (Cauchy, 1813)

A polytope is uniquely determined (up to isometry) by its combinatorics and the
shapes of its 2-faces.
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Reconstruction of
pointed polytopes



Pointed polytopes

:= polytope P ⊂ Rd + point xP ∈ Rd

radius

p : GP → Rd

Questions:

I Is a pointed polytope determined by the graph, edge lengths and radii?

I ... also as a framework? (coned polytope frameworks)
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Pointed polytopes and frameworks
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Main conjectures

Conjecture.

A pointed polytope P with xP ∈ int(P ) is uniquely determined (up to isometry)
by its edge graph, edge lengths and radii.

... across all dimensions and all combinatorial types!

Conjecture. (tensegrity version)

If P ⊂ Rd and Q ⊂ Re are pointed polytopes with the same edge graph and

(i) xQ ∈ int(Q)

(ii) edges in Q are at most as long as in P ,

(iii) radii in Q are at least as large as in P ,

then P and Q are isometric.

“A polytope cannot become larger if all its edges become shorter.”
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Conjecture holds in special cases (W., 2023)

I. Q is a small perturbation of P

I one can replace Q by a graph embedding q : GP → Rd
∼= locally rigid as a framework

II. P and Q are centrally symmetric

I one can replace Q by a centrally symmetric graph embedding q : GP → Re
∼= universally rigid as a centrally symmetric framework

III. P and Q are combinatorially equivalent

I in particular true for polytope of dimension d ≤ 3
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Is this surprising?

I. Q is a small perturbation of P

I one can replace Q by a graph embedding q : GP → Rd
∼= locally rigid as a framework

#DOFs−#constraints = (
V
8 + 1)×

d
3− (

E
12 +

V
8) = 7 = 6 + 1.
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Ingredients
to the proof



Warmup: simplices

P,Q ⊂ Rd pointed simplices with xP = xQ = 0,

(i) 0 ∈ int(Q),

=⇒ 0 =
∑

i αiqi ... convex combination with αi > 0

(ii) edges in Q are at most as long as in P .

(iii) radii in Q are at least as large as in P .

Proof. ∑
i

αi‖pi‖2 =
∥∥∥∑

i

αipi

∥∥∥2

+ 1
2

∑
i,j

αiαj‖pi − pj‖2

(iii) (i) (ii)∑
i

αi‖qi‖2 =
∥∥∥∑

i

αiqi

∥∥∥2

+ 1
2

∑
i,j

αiαj‖qi − qj‖2

Therefore P ' Q. �
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Polytopes energy

Fix α ∈ ∆n := {(α1, ..., αn) ∈ Rn≥0 | α1 + · · ·+ αn = 1}

α-energy: Eα(P ) :=
1
2

∑
i,j

αiαj‖pi − pj‖2

“If edges shrink, then the energy decreases

, if α is chosen suitably.”

Key theorem

Let α be the Wachspress coordinates of some interior point of P . If edges in
q : GP → Re are not longer than in P , then

Eα(q) ≤ Eα(P ),

with equality if and only if q 'affine P .

Martin Winter 14 / 28
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A glimpse of
Wachspress geometry



Wachspress coordinates are ...

I. ... relative cone volumes (Ju et al., 2005)

polar dual ... P ◦ := {x ∈ Rd | 〈x, pi〉 ≤ 1 for all i ∈ V (GP )}.

αi =
vol(F ◦

i )

‖pi‖ vol(P ◦)

II. ... the unique rational GBCs of lowest possible degree (Warren, 2003)

αi(x) =
pi(x)

q(x)
where q(x) =

∑
i

pi(x) ... adjoint polynomial

Theorem. (Warren)

Wachspress coordinates are the unique rational GBCs of lowest possible degree.
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Wachspress coordinates are ...

III. ... a “shadow” of a higher rank objects

Theorem. (Izmestiev, 2007)

For a pointed polytope P ⊂ Rd there is a matrix M ∈ Rn×n with

(i) Mij > 0 whenever ij ∈ E(GP ),

(ii) Mij = 0 whenever i 6= j and ij 6∈ E(GP ),

(iii) dim ker(M) = d,

(iv) MXP = 0, where X>P = (p1, ..., pn) ∈ Rd×n,

(v) M has a single positive eigenvalue of multiplicity 1.

αi(x) =
∑
j

Mij(x) (W., 2023)

Martin Winter 16 / 28
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Proving the key theorem ...

Key theorem

Let α be the Wachspress coordinates of some interior point of P . If edges in
q : Gp → Re are not longer than in P , then

Eα(q) ≤ Eα(P ).

“The skeleton of P has the maximal α-energy among all embeddings of GP
whose edges are not longer than in P .”

max Eα(q)
s.t. ‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E

q1, ..., qn ∈ Rn

Martin Winter 17 / 28



Proof via semidefinite programming

max Eα(q)
s.t. ‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E

q1, ..., qn ∈ Rn

⇐
= by translation invariance

Eα(P ) =

max
∑
i αi‖qi‖2

s.t.
∑
i αiqi = 0

‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E
q1, ..., qn ∈ Rn

⇐
= dual program

Eα(P ) =

min
∑
ij∈E wij‖pi − pj‖2

s.t. Lw − diag(α) + µαα> � 0
w ≥ 0, µ free
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Consequences

Corollary.

A pointed polytope is uniquely determined (up to affine transformations) by its
edge graph, edge lengths and Wachspress coordinates.

A polytope can be reconstructed in polynomial time (via a semidefinite program).

Martin Winter 19 / 28



Are we done ... ?

P,Q ⊂ Rd pointed polytopes with xP = xQ = 0,

(i) 0 ∈ int(Q), =⇒ 0 =
∑

i αiqi ... convex combination with αi > 0

(ii) edges in Q are at most as long as in P .

+ Wachspress coordinates in P

(iii) radii in Q are at least as large as in P .

Proof. ∑
i

αi‖pi‖2 =
∥∥∥∑

i

αipi

∥∥∥2

+ 1
2

∑
i,j

αiαj‖pi − pj‖2

≥ (iii) ≤ (i) ≤ ??∑
i

αi‖qi‖2 =
∥∥∥∑

i

αiqi

∥∥∥2

+ 1
2

∑
i,j

αiαj‖qi − qj‖2

Therefore P ' Q. �
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The Wachspress map φ : P → Q

x ∈ P 7−→ α(x) ∈ ∆n 7−→ φ(x) :=
∑
i

αi(x)qi ∈ Q

Key lemma.

If P ⊂ Rd and q : GP → Re satisfy

(i) there is x ∈ int(P ) with ‖φ(x)‖ ≤ ‖x‖, (e.g. if φ(x) = 0)

(ii) edges in q are at most as long as in P ,

(iii) radii in q are at least as large as in P ,

then q 'iso P .
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Second-order rigidity &
other conjectures



First- and second order rigidity

Coned polytope frameworks are ...

X rigid

7 not first-order rigid

? probably second-order rigid

Conjecture. (Connelly, Gortler, Theran, W.; 2024)

Coned polytope frameworks are second-order rigid. (actually prestress stable)

This is implied by the following conjecture of independent interest ...
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A stronger conjecture

0 =

Minkowski’s

balancing condition∑
i

Vini

=⇒ 0 =
d

dt

∑
i

Vini =
∑
i

V̇ini +
∑
i

Viṅi

.

Conjecture.

If there is no first-order change in the angles between adjacent facets, then∑
i

V̇ini =
∑
i

Viṅi = 0.
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Thank you.

M. Winter,“Rigidity, Tensegrity and Reconstruction of Polytopes under
Metric Constraints” (2023)

R. Connelly, S.J. Gortler, L. Theran, M. Winter
“Energies on coned convex polytopes” (2024)
“The stress-flex conjecture” (2024)
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