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THE SETTING: CONVEX POLYTOPES

P = conv{pi, ...,pn} C R
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> always convex
> general dimension d > 2
> general geometry & combinatorics (not only simple/simplicial /lattice/...)

> always of full dimension
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THE COMBINATORICS OF A POLYTOPE

face lattice
combinatorial type .
(full) combinatorics
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(GEOMETRIC REALIZATIONS

. . linearly combinatorially
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RECONSTRUCTION OF
POLYTOPES




RECONSTRUCTION OF POLYTOPES

“In how far is a polytope determined by partial combinatorial and geometric
data, up to isometry, affine transformation or combinatorial equivalence?”

reconstructing reconstructing
combinatorics geometry
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RECONSTRUCTING COMBINATORICS (d > 4)
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Question I: Is this the edge graph of a polytope?

Question ll: If yes, what is the polytope’s dimension and full combinatorics?
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RECONSTRUCTING GEOMETRY

Given the full combinatorics, can we reconstruct from ...
> edge lengths X
> dihedral angles X
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RECONSTRUCTING GEOMETRY

Given the full combinatorics, can we reconstruct from ...
»

. } edge lengths + dihedral angles v* (STokER)

Cauchy's rigidity theorem (Caucny, 1813)

A polytope is uniquely determined (up to isometry) by its combinatorics and the
shapes of its 2-faces.
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POINTED POLYTOPES

:= polytope P C R? + point zp € R?

xp
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Questions:
> Is a pointed polytope determined by the graph, edge lengths and radii?
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POINTED POLYTOPES

:= polytope P C R? + point zp € R?

. /.\. . /:X(radius
) LX

./.
p: Gp — R4
Questions:

> Is a pointed polytope determined by the graph, edge lengths and radii?
> ... also as a framework? (coned polytope frameworks)

Martin Winter



POINTED POLYTOPES

Martin Winter



MAIN CONJECTURES

Conjecture.

A pointed polytope P with xp € int(P) is uniquely determined (up to isometry)
by its edge graph, edge lengths and radii.

.. across all dimensions and all combinatorial types!
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Conjecture.

A pointed polytope P with xp € int(P) is uniquely determined (up to isometry)
by its edge graph, edge lengths and radii.

.. across all dimensions and all combinatorial types!

Conjecture. (tensegrity version)

If P C RY and Q C R® are pointed polytopes with the same edge graph and
(i) zg € int(Q)

(ii) edges in Q) are at most as long as in P,

(i) radii in Q are at least as large as in P,
then P and @) are isometric.

“A polytope cannot become larger if all its edges become shorter.”
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CONJECTURE HOLDS IN SPECIAL CASES (W., 2023)

l. Q is a small perturbation of P
> one can replace Q by a graph embedding ¢: Gp — R?
= locally rigid as a framework

Il. P and @ are centrally symmetric
> one can replace @) by a centrally symmetric graph embedding ¢: Gp — R¢
= universally rigid as a centrally symmetric framework

Il. P and Q are combinatorially equivalent

> in particular true for polytope of dimension d < 3
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IS THIS SURPRISING?

l. Q is a small perturbation of P
> one can replace @ by a graph embedding ¢: Gp — R¢
= locally rigid as a framework

STA L
R

v d E V
#DOFs — #constraints = (8 + 1) x 3 — (12+ 8)=7=0 + 1.
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WARMUP: SIMPLICES

P,Q C R? pointed simplices with zp = 2o = 0,
(i) 0 €int(Q),
(i) edges in @ are at most as long as in P.

(i) radii in @ are at least as large as in P.
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POLYTOPES ENERGY

Fix ae A, = {(a,...,0,) ¢ R, oy 4+ +a, =1}

a-energy:  E,(P) := %Z aiaj||pi - pj“2
%,J

”

“If edges shrink, then the energy decreases, if «v is chosen suitably.

Key theorem

Let o be the \Wachspress coordinates of some interior point of P. If edges in
q : Gp — R€ are not longer than in P, then

Ea(q) < Eo(P),

with equality if and only if ¢ ~atmne P.
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WACHSPRESS COORDINATES ARE ...

l. ... relative cone volumes (Ju et al., 2005)

polar dual ... P°:={z € R | (z,p;) < 1forallieV(Gp)}.

o — vol(FY)
" lpill vol(P?)
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l. ... relative cone volumes (Ju et al., 2005)

polar dual ... P°:={z € R | (z,p;) < 1forallieV(Gp)}.

vol(FY)
o O = 57— 7,
ol vol(P)
Il. ... the unique rational GBCs of lowest possible degree (\Wirriy, 2003)

() = Pi(@)
() q(r)

where q(z) = Z p:(x) ... adjoint polynomial
i

Theorem. (WARREN)

Wachspress coordinates are the unique rational GBCs of lowest possible degree.

Martin Winter 15 / 28



WACHSPRESS COORDINATES ARE ...

Il. ... the unique rational GBCs of lowest possible degree (\WirriN, 2003)

() = Pi(@)
() q(r)

where q(z) = Z p:(x) ... adjoint polynomial
i

Theorem. (WARREN)

Wachspress coordinates are the unique rational GBCs of lowest possible degree.

Martin Winter 15 / 28



WACHSPRESS COORDINATES ARE ...

I1l. ... a “shadow” of a higher rank objects

Theorem. (IzmesTiEV, 2007)
For a pointed polytope P C RY there is a matrix M € R™*"™ with

Martin Winter 16 / 28



WACHSPRESS COORDINATES ARE ...

I1l. ... a “shadow” of a higher rank objects

Theorem. (IzmesTiEV, 2007)

For a pointed polytope P C RY there is a matrix M € R™*"™ with
(i) M;; > 0 whenever ij € E(Gp),

(i) M;; =0 whenever i # j and ij ¢ E(Gp),

(iii)

(iv)

v)

Martin Winter 16 / 28



WACHSPRESS COORDINATES ARE ...

I1l. ... a “shadow” of a higher rank objects

Theorem. (IzmesTiEV, 2007)

For a pointed polytope P C RY there is a matrix M € R™*"™ with
(i) M;; > 0 whenever ij € E(Gp),

(i) M;; =0 whenever i # j and ij ¢ E(Gp),

(i) dimker(M) =d,

(iv) MXp =0, where X}, = (p1,...,pn) € R,

v)

Martin Winter 16 / 28



WACHSPRESS COORDINATES ARE ...

I1l. ... a “shadow” of a higher rank objects

Theorem. (IzmesTiEV, 2007)

For a pointed polytope P C RY there is a matrix M € R™*"™ with
(i) M;; > 0 whenever ij € E(Gp),

(i) M;; =0 whenever i # j and ij ¢ E(Gp),

(i) dimker(M) =d,

(iv) MXp =0, where X}, = (p1, ..., pn) € R¥X™,

(v) M has a single positive eigenvalue of multiplicity 1.

Martin Winter 16 / 28



WACHSPRESS COORDINATES ARE ...

I1l. ... a “shadow” of a higher rank objects

Theorem. (IzmesTiEV, 2007)

For a pointed polytope P C RY there is a matrix M € R™*"™ with
(i) M;; > 0 whenever ij € E(Gp),

(i) M;; =0 whenever i # j and ij ¢ E(Gp),

(iii) dimker(M) =d,

(iv) MXp =0, where X}, = (p1, ..., pn) € R¥X™,

(v) M has a single positive eigenvalue of multiplicity 1.

a;(z) = Z M;j(x) (w. 2023)
j
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PROVING THE KEY THEOREM ...

Key theorem

Let o be the Wachspress coordinates of some interior point of P. If edges in
q : G, = R¢ are not longer than in P, then

Ea(Q) < Ea(P)'

“The skeleton of P has the maximal a-energy among all embeddings of G p
whose edges are not longer than in P.”

max  F,(q)
st |lgi — gl <llpi —pjll, forallije E
Qs Qn € R
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CONSEQUENCES

Corollary.

A pointed polytope is uniquely determined (up to affine transformations) by its
edge graph, edge lengths and Wachspress coordinates.

A polytope can be reconstructed in polynomial time (via a semidefinite program).
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ARE WE DONE ... 7

P,Q C R? pointed polytopes with zp = 2o = 0,
(i) 0 €eint(Q), = 0=>, wqi ... convex combination with a; > 0
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THE WACHSPRESS MAP ¢: P — @)

xe€P — az)eA, — ¢ Zal Jgi € Q

[0y NG

Martin Winter 21 /28



THE WACHSPRESS MAP ¢: P — @)

xe€P — az)eA, — ¢ Zaz )ai € Q

[0} 2N

Martin Winter



THE WACHSPRESS MAP ¢: P — @)

xe€P — az)eA, — ¢ Zaz )gi € Q

[0} 2N

Key lemma.
If P C R and q : Gp — R€ satisfy
(i) there is x € int(P) with ||p(x)| < ||z||, (eg ifolx) =0)
(ii) edges in q are at most as long as in P,
(iii) radii in q are at least as large as in P,
then q ~iso P.
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FIRST- AND SECOND ORDER RIGIDITY

Coned polytope frameworks are ... (Al
v’ rigid
X not first-order rigid
7 probably second-order rigid

Conjectu re. (CoNNELLY, GORTLER, THERAN, W.; 2024)

Coned polytope frameworks are second-order rigid. (actually prestress stable)

This is implied by the following conjecture of independent interest ...
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A STRONGER CONJECTURE

Minkowski's

balancing condition
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Minkowski's

balancing condition

0=2 Vini = 0= %ZV"=ZV”+ZV"
(2 7 7 (2

Conjecture.

If there is no first-order change in the angles between adjacent facets, then
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Thank you.

M. Winter, “Rigidity, Tensegrity and Reconstruction of Polytopes under
Metric Constraints” (2023)

R. Connelly, S.J. Gortler, L. Theran, M. Winter
“Energies on coned convex polytopes” (2024)
“The stress-flex conjecture” (2024)
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